During the last decades, the Euler scheme was the common "workhorse" in particle tracking, although it is the lowest-order approximation of the underlying stochastic differential equation. To convince the modelling community of the need for better methods, we have constructed a new test case that will show the shortcomings of the Euler scheme. We use an idealised shallow-water diffusivity profile that mimics the presence of a sharp pycnocline and thus a quasi-impermeable barrier to vertical diffusion. In this context, we study the transport of passive particles with or without negative buoyancy. A semi-analytic solutions is used to assess the performance of various numerical particle-tracking schemes (first-and secondorder accuracy), to treat the variations in the diffusivity profile properly. We show that the commonly used Euler scheme exhibits a poor performance and that widely used particle-tracking codes shall be updated to either the Milstein scheme or second-order schemes. It is further seen that the order of convergence is not the only relevant factor, the absolute value of the error also is.
The inspiration for this study is to explore the crucial impact of viscous dissipation (VISD) on magneto flow through a cross or secondary flow (CRF) in the way of streamwise. Utilizing the pertinent similarity method, the primary partial differential equations (PDEs) are changed into a highly nonlinear dimensional form of ordinary differential equations (ODEs). These dimensionless forms of ODEs are executed numerically by the aid of bvp4c solver. The impact of pertinent parameters such as the suction parameter, magnetic parameter, moving parameter, and viscous dissipation parameter is discussed with the help of plots. Dual solutions are obtained for certain values of a moving parameter. The velocities in the direction of streamwise, as well as cross-flow, decline in the upper branch solution, while the contrary impact is seen in the lower branch solution. However, the influence of suction on the velocities in both directions uplifts in the upper branch solution and shrinks in the lower branch solution. The analysis is also performed in terms of stability to inspect which solution is stable or unstable, and it is observed that the lower branch solution is unstable, whereas the upper branch one is stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.