The present review provides a comprehensive insight of pharmacological and therapeutic potential of BCP, its molecular mechanism and signaling pathways in different pathological conditions. The review also examines the possibility of its further development as a novel candidate for various pathologies considering the polypharmacological and multifaceted therapeutic properties potential along with favorable oral bioavailability, lipophilicity and physicochemical properties.
Oximes are cholinesterase reactivators used in organophosphorus poisoning. Clinical experience with pralidoxime (PRX) and other oximes is disappointing and their routine use has been questioned. In addition it is known that not all oximes are equally effective against all existing organophosphorus compounds. There is a demand for broad-spectrum reactivators with a higher efficacy than PRX. Based on our previous in vitro work the protection conferred by the various new oximes against inhibition by paraoxon as quantified by the IC(50) shift (nM increase in the IC(50) of the inhibitor per microM oxime present) is: 0.3 (PRX), 0.4 (methoxime; MMC-4), 1 (K-33), 1.2 (BI-6), 1.5 (K-48) and 3.7 (K-27). The purpose of the study was to quantify in vivo the extent of oxime-conferred protection, using paraoxon (POX) as a cholinesterase inhibitor and to test whether in vitro efficacy translates to protection from mortality. There were seven groups of six rats in each cycle of the experiment. Group 1 (G1) received 1 micromol POX (approximately LD(75)), the other groups (G2-G7) received 1 micromol POX + of one the six reactivators. The animals were monitored for 48 h and the time of mortality was recorded. The procedure was repeated five times (cycles). All substances were applied i.p. The experiments were repeated using 2, 3, 5 and 10 micromol POX. Mortality data were compared and hazards ratios (relative risks) ranked using the Cox proportional hazards model using POX dose and group (reactivator) as time-independent covariables. The relative risk of death estimated by Cox analysis (95% CI) in oxime treated animals when compared with untreated animals, adjusted for POX dose (high/low) was K-27: 0.26 (0.19-0.35); K-48: 0.34 (0.25-0.45); methoxime: 0.38 (0.29-0.50); BI-6: 0.53 (0.41-0.69); PRX: 0.70 (0.54-0.91); K-33: 0.82 (0.63-1.07). It is concluded that K-27 and K-48 are the most promising new oximes. The compounds with the best results in vitro also confer the best protection in vivo. Further testing using methyl- and propyl-organophosphates are needed.
Prophylactic administration of reversible acetylcholinesterase (AChE) inhibitors before exposure to organophosphorus compounds (OPCs) can reduce OPC-induced mortality. Pyridostigmine is the only FDA-approved substance for such use. The AChE-inhibitory activity of known AChE inhibitors was quantified in vitro and their in vivo mortality-reducing efficacy was compared, when given prophylactically before the exposure to the OPC diisopropylfluorophosphate (DFP). The IC50 was measured in vitro for the known AChE inhibitors pyridostigmine, physostigmine, ranitidine, tiapride, tacrine, 7-methoxytacrine, amiloride, metoclopramide, methylene blue and the experimental oxime K-27. Their in vivo efficacy, when given as pretreatment, to protect rats from DFP-induced mortality was quantified by determining the relative risk of death (RR) by Cox analysis, with RR = 1 for animals given only DFP, but no pretreatment. Physostigmine was the strongest in vitro AChE-inhibitor (IC50 = 0.012 µ m), followed by 7-methoxytacrine, tacrine, pyridostigmine and methylene blue. Ranitidine (IC50 = 2.5 µ m), metoclopramide and amiloride were in the mid-range. Tiapride (IC50 = 256 µ m) and K-27 (IC50 = 414 µ m) only weakly inhibited RBC AChE activity. Best in vivo protection from DFP-induced mortality was achieved when physostigmine (RR = 0.02) or tacrine (RR = 0.05) was given before DFP exposure, which was significantly superior to the pretreatment with all other tested compounds, except K-27 (RR = 0.18). The mortality-reducing effect of pyridostigmine, ranitidine and 7-methoxytacrine was inferior, but still significant. Tiapride, methylene blue, metoclopramide and amiloride did not significantly improve DFP-induced mortality. K-27 may be a more efficacious alternative to pyridostigmine, when passage into the brain precludes administration of physostigmine or tacrine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.