Rapid and sensitive detection of influenza virus is of soaring importance to prevent further spread of infections and adequate clinical treatment. Herein, an ultrasensitive colorimetric assay called magnetic nano(e)zyme-linked immunosorbent assay (MagLISA) is suggested, in which silica-shelled magnetic nanobeads (MagNBs) and gold nanoparticles are combined to monitor influenza A virus up to femtogram per milliliter concentration. Two essential strategies for ultrasensitive sensing are designed, i.e., facile target separation by MagNBs and signal amplification by the enzymelike activity of gold nanozymes (AuNZs). The enzymelike activity was experimentally and computationally evaluated, where the catalyticity of AuNZ was tremendously stronger than that of normal biological enzymes. In the spiked test, a straightforward linearity was presented in the range of 5.0 × 10-5.0 × 10g·mL in detecting the influenza virus A (New Caledonia/20/1999) (H1N1). The detection limit is up to 5.0 × 10 g·mL only by human eyes, as well as up to 44.2 × 10 g·mL by a microplate reader, which is the lowest record to monitor influenza virus using enzyme-linked immunosorbent assay-based technology as far as we know. Clinically isolated human serum samples were successfully observed at the detection limit of 2.6 PFU·mL. This novel MagLISA demonstrates, therefore, a robust sensing platform possessing the advances of fathomable sample separation, enrichment, ultrasensitive readout, and anti-interference ability may reduce the spread of influenza virus and provide immediate clinical treatment.
A synthetic way of chiral zirconium quantum dots (Zr QDs) was presented for the first time using L(+)-ascorbic acid acts as a surface as well as chiral ligands. Different spectroscopic and microscopic analysis was performed for thorough characterization of Zr QDs. As-synthesized QDs exhibited fluorescence and circular dichroism properties, and the peaks were located at 412 nm and 352 nm, respectively. MTT assay was performed to test the cytotoxicity of the synthesized Zr QDs against rat brain glioma C6 cells. Synthesized QDs was further conjugated with anti-infectious bronchitis virus (IBV) antibodies of coronavirus to form an immunolink at the presence of the target analyte and anti-IBV antibody-conjugated magneto-plasmonic nanoparticles (MPNPs). The fluorescence properties of immuno-conjugated QD–MP NPs nanohybrids through separation by an external magnetic field enabled biosensing of coronavirus with a limit of detection of 79.15 EID/50 μL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.