The
astrophysical phenomenon of mimetic helical magnetic field
(h
B)-assisted self-assembly is herein
introduced to build helical superstructures that display chiroptical
properties. As a building block, magnetoplasmonic (MagPlas) Ag@Fe3O4 core–shell nanoparticles are used to
guide plasmonic Ag nanoparticles onto a helical magnetic flux. The
chirality of the assembled helical structures and tailored circular
dichroism are successfully tuned in real time, and the handedness
of the assembled structures is dynamically switched by the h
B at the millisecond level, which is at least
6000-fold faster than other template-assisted methods. The peak position
of circular dichroism can be reconfigured by altering the plasmonic
resonance or coupling by controlling the size of the Ag core and magnetic
flux density. The h
B-induced chirality
modulation represents a method to control the polarization state of
light at the nexus of plasmonics, magnetic self-assembly, colloidal
science, liquid crystals, and chirality. It presents active and dynamic
chiral assemblies of magnetoplasmonic nanomaterials, enabling further
practical applications in optical devices.
Rapid and sensitive detection of influenza virus is of soaring importance to prevent further spread of infections and adequate clinical treatment. Herein, an ultrasensitive colorimetric assay called magnetic nano(e)zyme-linked immunosorbent assay (MagLISA) is suggested, in which silica-shelled magnetic nanobeads (MagNBs) and gold nanoparticles are combined to monitor influenza A virus up to femtogram per milliliter concentration. Two essential strategies for ultrasensitive sensing are designed, i.e., facile target separation by MagNBs and signal amplification by the enzymelike activity of gold nanozymes (AuNZs). The enzymelike activity was experimentally and computationally evaluated, where the catalyticity of AuNZ was tremendously stronger than that of normal biological enzymes. In the spiked test, a straightforward linearity was presented in the range of 5.0 × 10-5.0 × 10g·mL in detecting the influenza virus A (New Caledonia/20/1999) (H1N1). The detection limit is up to 5.0 × 10 g·mL only by human eyes, as well as up to 44.2 × 10 g·mL by a microplate reader, which is the lowest record to monitor influenza virus using enzyme-linked immunosorbent assay-based technology as far as we know. Clinically isolated human serum samples were successfully observed at the detection limit of 2.6 PFU·mL. This novel MagLISA demonstrates, therefore, a robust sensing platform possessing the advances of fathomable sample separation, enrichment, ultrasensitive readout, and anti-interference ability may reduce the spread of influenza virus and provide immediate clinical treatment.
A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).
Magnetoplasmonic FeO-coated Ag nanoparticles (NPs) are assembled in large scale (18 × 18 mm) in order to observe unique modulation of plasmonic coupling and optical tunable application via both external magnetic field and the combination of magnetic dipole and electrostatic interactions of particle-particle and particle-substrate. These large nanochains film exhibits outstanding tunability of plasmonic resonance from visible to near-infrared range by controlling the polarization angle and interparticle distance (IPD). The enormous spectral shift mainly originated from far-field rather than near-field coupling of Ag cores because of the sufficiently large separation between them in which FeO shell acts as spacer. This tunable magnetoplasmonic film can be applicable in the field of anisotropic optical waveguides, tunable optical filter, and nanoscale sensing platform.
One-dimensional magnetoplasmonic nanochains (MPNCs) were self-assembled using Au-coated Fe3O4 core-shell superparamagnetic nanoparticles (Fe3O4@Au NPs) by applying an external static magnetic field. The assembly mechanism of the Fe3O4@Au NPs was investigated thoroughly, revealing that substrate-particle interactions, van der Waals forces, and magnetic forces play important roles in the formation and control of the MPNCs. Magnetic force microscopy (MFM) and vibrating sample magnetometry (VSM) were used to study the magnetic properties of the MPNCs, which were compared with those of Fe3O4 nanochains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.