Magnetoplasmonic FeO-coated Ag nanoparticles (NPs) are assembled in large scale (18 × 18 mm) in order to observe unique modulation of plasmonic coupling and optical tunable application via both external magnetic field and the combination of magnetic dipole and electrostatic interactions of particle-particle and particle-substrate. These large nanochains film exhibits outstanding tunability of plasmonic resonance from visible to near-infrared range by controlling the polarization angle and interparticle distance (IPD). The enormous spectral shift mainly originated from far-field rather than near-field coupling of Ag cores because of the sufficiently large separation between them in which FeO shell acts as spacer. This tunable magnetoplasmonic film can be applicable in the field of anisotropic optical waveguides, tunable optical filter, and nanoscale sensing platform.
Postsurgical intraocular lens (IOL) infection caused by pathogenic bacteria can result in blindness and often requires a secondary operation to replace the contaminated lens. The incorporation of an antibacterial property onto the IOL surface can prevent bacterial infection and postoperative endophthalmitis. This study describes a polymeric nanopillar array (NPA) integrated onto an IOL, which captures and eradicates the bacteria by rupturing the bacterial membrane. This is accomplished by changing the behavior of the elastic nanopillars using bending, restoration, and antibacterial surface modification. The combination of the polymer coating and NPA dimensions can decrease the adhesivity of corneal endothelial cells and posterior capsule opacification without causing cytotoxicity. An ionic antibacterial polymer layer is introduced onto an NPA using an initiated chemical vapor deposition process. This improves bacterial membrane rupture efficiency by increasing the interactions between the bacteria and nanopillars and damages the bacterial membrane using quaternary ammonium compounds. The newly developed ionic polymer‐coated NPA exceeds 99% antibacterial efficiency against Staphylococcus aureus, which is achieved through topological and physicochemical surface modification. Thus, this paper provides a novel, efficient strategy to prevent postoperative complications related to bacteria contamination of IOL after cataract surgery.
Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.