Quenching of fluorophores by the same proteins that they covalently label is a phenomenon that is neither well-known nor well-characterized. It is often assumed that fluorophores are unperturbed by their target proteins. However, it has been observed that attached fluorophores can be quenched by contact with amino acids within the same protein, and this property has been exploited to report on changing conformational states or intramolecular dynamics of proteins. We show in this communication that fluorescence of Alexa dyes is, in fact, quenched by interactions with Trp, Tyr, Met, and His residues through a combination of static and dynamic quenching mechanisms. In light of this finding, the potential effect of intramolecular quenching should be considered in the interpretation of data that involves quantitative measurements of fluorescence intensity in proteins.
While photocatalytic water-splitting is a promising alternative energy source, low photocatalytic efficiencies in the visible spectrum hinders its widespread deployment and commercialization. Although screening combinations of new materials and characterizing their reaction kinetics offers possible improvements to efficiency, current experiments are challenged by expensive bulky setups and slow recovery of particles downstream. Optofluidics is a good platform for screening Z-scheme catalysts cheaply and rapidly. By alleviating the problems of mass transport it can also potentially increase reaction rates and efficiencies. Here, we demonstrate a novel optofluidic device based on applying catalyst sol-gels on planar channels while measuring the reaction output by monitoring the depletion of the redox mediators. We use our setup to study the kinetics of the TiO(2)-Pt water-splitting reaction mediated by I(-)/IO(3)(-) redox pairs under different flow rates. In particular, for TiO(2)-Pt, we show ~2-fold improvements in reaction rates and efficiencies.
The metabolism of birds is finely tuned to their activities and environments, and thus research on avian systems can play an important role in understanding organismal responses to environmental changes. At present, however, the physiological monitoring of bird metabolism is limited by the inability to take real-time measurements of key metabolites during flight. In this study, we present an implantable biosensor system that can be used for continuous monitoring of uric acid levels of birds during various activities including flight. The system consists of a needle-type enzymatic biosensor for the amperometric detection of uric acid in interstitial fluids. A lightweight two-electrode potentiostat system drives the biosensor, reads the corresponding output current and wirelessly transfers the data or records to flash memory. We show how the device can be used to monitor, in real time, the effects of short-term flight and rest cycles on the uric acid levels of pigeons. In addition, we demonstrate that our device has the ability to measure uric acid level increase in homing pigeons while they fly freely. Successful application of the sensor in migratory birds could open up a new way of studying birds in flight which would lead to a better understanding of the ecology and biology of avian movements.
Compact algal reactors are presented with: (1) closely stacked layers of waveguides to decrease light-path to enable larger optimal light-zones; (2) waveguides containing scatterers to uniformly distribute light; and (3) hollow fiber membranes to reduce energy required for gas transfer. The reactors are optimized by characterizing the aeration of different gases through hollow fiber membranes and characterizing light intensities at different culture densities. Close to 65% improvement in plateau peak productivities was achieved under low light-intensity growth experiments while maintaining 90% average/peak productivity output during 7-h light cycles. With associated mixing costs of ∼ 1 mW/L, several magnitudes smaller than closed photobioreactors, a twofold increase is realized in growth ramp rates with carbonated gas streams under high light intensities, and close to 20% output improvement across light intensities in reactors loaded with high density cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.