Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.
Vertebrates kidneys contribute to the homeostasis by regulating electrolyte, acid-base balance, and prevent protein loss into the urine. Glomerular podocytes constitute blood-urine barrier and podocyte slit-diaphragm, a modified tight junction contributes to the glomerular permselectivity. Nephrin, podocin, CD2AP, and TRPC6 are considered to be crucial members, which largely interact with each other and contribute to the structural and functional integrity of the slit-diaphragm. In this study, we analyzed the distribution of these four-key slit-diaphragm proteins across the organisms for which the genome sequence is available. We found that nephrin has a diverse distribution ranging from nematodes to higher vertebrates whereas podocin, CD2AP, and TRPC6 are predominantly restricted to the vertebrates. In the invertebrates nephrin and its orthologs consist of more immunoglobulin-3 and immunoglobulin-5 domains when compared to the vertebrates wherein, CD80-like C2-set Ig2 domains were predominant. Src Homology-3 (SH3) domain of CD2AP and SPFH domain of podocin are highly conserved among vertebrates. Although the majority of the TRPC6 and its orthologs had conserved ankyrin repeats, TRP, and ion transport domains, the orthologs of TRPC6 present in Rhincodon typus and Acanthaster planci do not possess the ankyrin repeats. Intrinsically unstructured regions (IURs), which are considered to contribute to the interactions among these proteins are largely conserved among orthologs of these proteins, suggesting the importance of IURs in the protein complexes that constitute slit-diaphragm. This study for the first time reports the evolutionary insights of vertebrate slit-diaphragm proteins and its invertebrate orthologs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.