Abstract.A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs) and Indium Antimonide (InSb) photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.
This paper aims to present energy extraction behavior of multi stage Micro Hydro Turbine (MHT), particularly when it operates in a low velocity In-Stream water body. Development a MHT with multi stage blade (runner) for water velocity ranges from 0.5 m/s to 1.0 m/s is the novelty of this research. Findings of literature review on MHT and simulation results of ANSYS CFD software are the basis of designing this research project. The vital parameters involved in designing the turbine were blade area, blade stage, blades position against water flow direction, spacing between blades, blade materials; and other technical factors associated with turbine operations. The study revealed that the turbine had started to extract energy at water velocity 0.3 m/s at 35 RPM turbine speed. At water inlet velocity 1.1 m/s, the velocity drop across blade was 25.6% and the energy extraction efficiency was 48.3%. The findings demonstrated that the energy extraction capacity of turbine blade had been greatly influenced by the blade stages and water velocity. The study concludes that the developed turbine is useful in low velocity In-stream water body for energy extraction and would be able to contribute to achieve energy and environmental sustainability.
This paper reviews key production process for crude palm oil and highlights factors that highly influence the production of crude palm oil. This paper proposes a generic conceptual model for crude palm production process considering these factors. The conceptual model could be modified to consider other factors not included in this paper. The future research would be to construct a simulation model based on the conceptual model proposed in this paper and analyse the effect of these factors on the performance of crude palm oil production system.
This research paper determines the relationship between cutting edge temperature, depth of cut, cutting speed, cutting forces and flank wear. The cutting edge temperature is determined by using a pyrometer consists of Indium Arsenide (InAs) and Indium Antimonide (InSb) photocells to detect infrared radiation that are released from cutting tool’s edge and cutting forces is measured by using a dynamometer. The machining process experiment is done by end milling the outer surface of AISI 1095 carbon steel. The output signal from the photocell and dynamometer is processed and recorded in the digital oscilloscope. Based on the results, the cutting edge temperature and cutting force increases as the depth of cut increases. Meanwhile, increasing cutting speed resulting in cutting edge temperature increases but decreasing in cutting force due to thermal deformation. Also, existence of progressive flank wear at cutting tool causes an increment in cutting edge temperature and cutting force proportionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.