It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics.
Co epitaxial thin films with 2.5nm thickness were prepared on single-crystal MgO(001) substrates and annealed at different temperatures. The contribution of each interface of the MgO/Co/Cu trilayer to the in-plane magnetic anisotropy (IMA) was studied by changing interfacial coupling through annealing. The structure was measured by low energy electron diffraction (LEED), and the magnetic properties were measured using the anisotropic magnetoresistance (AMR) measurements and the longitudinal Magneto-optical Kerr effect magnetometer (MOKE). We found that the magnetic anisotropy of the as-deposited one shows superposition of a two-fold symmetry with a weak four-fold contribution caused by the stress of the interface between Co/Cu, which is along the easy axis [-110]. After annealing at 200°C, the symmetry of magnetic anisotropy was changed from uniaxial magnetic anisotropy (UMA) into four-fold symmetry due to the significant increasing of four-fold magnetocrystalline anisotropy. When the films were annealed above 300°C, the damage of the MgO/Co interface additionally decreased the IMA to isotropy. Meanwhile, the coercivity raised from 45Oe (without annealing) to 1200Oe (annealed at 400°C) along the easy axis direction. Our experimental results prove that the Co/Cu interface and the MgO/Co interface play an essential role in manipulating the four-fold and the UMA in the system.
Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001) substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm). The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED), magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR). By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer) one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA). We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer) to 300 Oe (with 20 nm Cu buffer), in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.