Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66%) were Gram negative and 17 (34%) Gram positive. About half of the isolates were pigment producers and were able to grow at 4–37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria) and Flavobacteria. The genus Pseudomonas (51.51%, 17) was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12%) Alcaligenes and 4 (12.12%) Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4) and Arthrobacter (23.52%, 4) were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2) and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11%) were more resistant to heavy metals as compared to Gram negative (78.79%) and showed maximum tolerance against iron and least tolerance against mercury.
Abstract. Although green synthesis of nanoparticles (NPs) has replaced conventio na l physicochemical methods owing to eco-friendly and cost effective nature but molecular mechanism is not known completely. Elucidation of the mechanism is needed to enhance the production of control size synthesis and for understanding the biomineralization process. Here we report the facile, extracellular biosynthesis of silver nanoparticles (AgNPs) by Pseudomonas aeruginosa JP1 through nitrate reductase mediated mechanism. AgNO3 was reduced to AgNPs by cell filtrate exposure. UV-visible spectrum of the reaction mixture depicted reduction of ionic silver (Ag + ) to atomic silver (Ag 0 ) by a progressive upsurge in surface plasmon resonance (SPR) band range 435-450 nm. X-ray diffraction analysis showed the 2θ values at 38.08°, 44.52°, 64.42° and 77.44° confirming the crystalline nature and mean diameter [6.5-27.88nm (Ave = 13.44 nm)] of AgNPs. Transmission electron microscopy analysis demonstrated the spherical AgNPs with size range 5-45 nm. Stabilizing proteins and rhamnolipids were recognized by Fourier transform infrared spectroscopy. Nitrate reductase was purified and characterized (molecular weight 65 kDa and specific activity = 5.6 U/mg). To probe the plausible mechanism purified enzyme was retreated with AgNO3. Characteristic SPR bands range (435-450 nm) and Particle-induced x-ray emission results also confirmed the synthesis of AgNPs (59679.5 ppm) in solution. These results demonstrated that, nitrate reductase as a principal reducing agent in the mechanistic pathway of AgNPs synthesis, which leads to the understanding of metal transformation and biomineralization processes for controlling the biogeochemical cycles of silver and other heavy metals.
A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.