Legumes establish mutualistic associations with mycorrhizal fungi and with nitrogen-fixing rhizobial bacteria. These interactions occur following plant recognition of Nod factor from rhizobial bacteria and Myc factor from mycorrhizal fungi. A common symbiosis signaling pathway is involved in the recognition of both Nod factor and Myc factor and is required for the establishment of these two symbioses. The outcomes of these associations differ, and therefore, despite the commonality in signaling, there must be mechanisms that allow specificity. In Nod factor signaling, a complex of GRAS-domain transcription factors controls gene expression downstream of the symbiosis signaling pathway. Here, we show that a GRAS-domain transcription factor, RAM1, functions in mycorrhizal-specific signaling. Plants mutated in RAM1 are unable to be colonized by mycorrhizal fungi, with a defect in hyphopodia formation on the surface of the root. RAM1 is specifically required for Myc factor signaling and appears to have no role in Nod factor signaling. RAM1 regulates the expression of RAM2, a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. We conclude that mycorrhizal signaling downstream of the symbiosis-signaling pathway has parallels with nodulation-specific signaling and functions to promote mycorrhizal colonization by regulating cutin biosynthesis.
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H + -ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H + -ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H + -ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H + -ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.
The establishment of the symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi requires a very tight molecular dialogue. Most of the known plant genes necessary for this process are also required for nodulation in legume plants and only very recently genes specifically required for AM symbiosis have been described. Among them we identified RAM (Reduced Arbuscular Mycorrhization)1 and RAM2, a GRAS transcription factor and a GPAT respectively, which are critical for the induction of hyphopodia formation in AM fungi. RAM2 function is also required for appressoria formation by the pathogen Phytophtora palmivora. Here we investigated the activity of RAM1 and RAM2 promoters during mycorrhization and the role of RAM1 and RAM2 during infection by the root pathogen Aphanomyces euteiches. pRAM1 is activated without cell type specificity before hyphopodia formation, while pRAM2 is specifically active in arbusculated cells providing evidence for a potential function of cutin momomers in the regulation of arbuscule formation. Furthermore, consistent with what we observed with Phytophtora, RAM2 but not RAM 1 is required during Aphanomyces euteiches infection.
Plants have a system of antioxidant enzymes, which helps to alleviate the effects of various types of stresses. Heavy metals like Cadmium and lead are tolerable for plants to certain extent. The antioxidant enzymes do not function properly at higher concentrations of Cadmium, lead and some other heavy metals. The activities of antioxidant enzymes are reduced due to reactive oxygen species produced as a result of heavy metal stress. The catalase activity was directly inhibited by O 2− (Kono and Fridovich, 1982). These ROS are O 2− , H 2 O 2 , and-OH which can react with many other biomolecules. Several metallic ions are produced by radical displacement reactions. These metallic ions inhibit the activity of antioxidant enzymes. Hence, enzymic antioxidant defense system of plants is affected and adversely inhibits plant growth and productivity. Mycorrhizal fungi are important in phytostabilization of toxic heavy metals. Plants having mycorrhizal association accumulate metallic pollutants by storing these heavy metals in Vesicles as well as in fungal hyphae in their roots, hence these metallic pollutants are immobilized and do not inhibit the growth and uptake of phosphorus and some other micronutrients. Mycorrhizal fungi also release various organic acids which increase the solubilisation of insoluble phosphate compounds present in soil. The unavailable forms of phosphorus are converted into available forms as a result of organic acids produced by fungi. AM fungi release glomalins that are certain metal sorble glycoproteins which increase the immobilization of toxic metals. Another protein is metallothionine released by certain AM fungi, which also reduces the heavy metal toxicity in soil. Mycorrhizal fungi also induce resistance in plants against pathogens, drought and salinity stress. Investigation on heavy metal stress resistant genes in mycorrhizal plants can be very helpful for phytoremediation. This review focuses on the use of AM fungi for phytoremediation.
The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01. The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.