A detailed reconstruction of West African monsoon hydrology over the past 155,000 years suggests a close linkage to northern high-latitude climate oscillations. Ba/Ca ratio and oxygen isotope composition of planktonic foraminifera in a marine sediment core from the Gulf of Guinea, in the eastern equatorial Atlantic (EEA), reveal centennial-scale variations of riverine freshwater input that are synchronous with northern high-latitude stadials and interstadials of the penultimate interglacial and the last deglaciation. EEA Mg/Ca-based sea surface temperatures (SSTs) were decoupled from northern high-latitude millennial-scale fluctuation and primarily responded to changes in atmospheric greenhouse gases and low-latitude solar insolation. The onset of enhanced monsoon precipitation lags behind the changes in EEA SSTs by up to 7000 years during glacial-interglacial transitions. This study demonstrates that the stadial-interstadial and deglacial climate instability of the northern high latitudes exerts dominant control on the West African monsoon dynamics through an atmospheric linkage.
International audience[1] Thirteen laboratories from the USA and Europe participated in an intercomparison study of Mg/Ca and Sr/Ca measurements in foraminifera. The study included five planktonic species from surface sediments from different geographical regions and water depths. Each of the laboratories followed their own cleaning and analytical procedures and had no specific information about the samples. Analysis of solutions of known Mg/Ca and Sr/Ca ratios showed that the intralaboratory instrumental precision is better than 0.5% for both Mg/Ca and Sr/Ca measurements, regardless whether ICP-OES or ICP-MS is used. The interlaboratory precision on the analysis of standard solutions was about 1.5% and 0.9% for Mg/Ca and Sr/Ca measurements, respectively. These are equivalent to Mg/Ca-based temperature repeatability and reproducibility on the analysis of solutions of +/- 0.2 degreesC and +/- 0.5 degreesC, respectively. The analysis of foraminifera suggests an interlaboratory variance of about +/-8% (%RSD) for Mg/Ca measurements, which translates to reproducibility of about +/- 2 - 3 degreesC. The relatively large range in the reproducibility of foraminiferal analysis is primarily due to relatively poor intralaboratory repeatability (about +/- 1 - 2 degreesC) and a bias (about 1 degreesC) due to the application of different cleaning methods by different laboratories. Improving the consistency of cleaning methods among laboratories will, therefore, likely lead to better reproducibility. Even more importantly, the results of this study highlight the need for standards calibration among laboratories as a first step toward improving interlaboratory compatibility
The Mg/Ca of planktic foraminifera Globeriginoides ruber (white) is a widely applied proxy for tropical and subtropical sea-surface temperature. The accuracy with which temperature can be reconstructed depends on how accurately relationships between Mg/Ca and temperature and the multiple secondary controls on Mg/Ca are known; however, these relationships remain poorly quantified under oceanic conditions. Here, we present new calibrations based on 440 sediment trap/plankton tow samples from the Atlantic, Pacific and Indian Oceans, including 130 new samples from the Bay of Bengal/Arabian Sea and the tropical Atlantic Ocean. Our results indicate temperature, salinity and the carbonate system all significantly influence Mg/Ca in G. ruber (white). We propose two calibration models: The first model assumes pH is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.0±0.8 %/°C (2s), a salinity sensitivity of 3.3±2.2 %/PSU and a pH sensitivity of-8.3±7.7 %/0.1 pH units; The second model assumes carbonate ion concentration ([CO 3 2-]) is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.7±0.8 %/°C, a salinity sensitivity of 5.0±3.0 %/PSU and a [CO 3 2-] sensitivity of-0.24±0.11 %/µmol kg-1. In both models, the temperature sensitivity is significantly lower than the widely-applied sensitivity of 9.0±0.6 %/°C. Application of our new calibrations to down-core data from the Last Glacial Maximum, considering whole ocean changes in salinity and carbonate chemistry, indicate a cooling of 2.4±1.6 °C in the tropical oceans if pH is the controlling parameter and 1.5±1.4 °C if [CO 3 2-] is the controlling parameter.
[1] In this study we utilize two organic geochemical proxies, the U 37 k′ index and TEX 86 , to examine past sea surface temperatures (SST) from a site located near the Nile River Delta in the eastern Mediterranean (EM) Sea. The U 37 k′ and TEX 86 records generally are in agreement and indicate SST ranges of 14°C-26°C and 14°C-28°C, respectively, during the last 27 cal ka. During the Holocene, TEX 86 -based SST estimates are usually higher than U 37 k′ -based SST estimates, which is likely due to seasonal differences between the timing of the haptophyte and crenarchaeota blooms in the EM and is related to the onset of the modern flow regime of the Nile River. Both records show that SST varied on centennial to millennial timescales in response to global climate events, i.e., cooling during the Last Glacial Maximum (LGM), Heinrich event 1 (H1), and the Younger Dryas (YD) and warming during the Bølling-Allerød and in the early Holocene during deposition of sapropel S1. The H1 cooling was particularly severe and is marked by a drop in SST of ∼4.5°C in comparison to pre-H1 SST, with temperatures >1°C cooler than during the LGM. In contrast to high-latitude and western Mediterranean records, which indicate both an abrupt onset and termination of the YD event, the transition from the YD to the Holocene was much more gradual in the EM.Citation: Castañeda, I. S., E. Schefuß, J. Pätzold, J. S. Sinninghe Damsté, S. Weldeab, and S. Schouten (2010), Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years, Paleoceanography, 25, PA1208,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.