Although optical fiber sensors have been developed for 30 years, there is a gap between lab experiments and field applications. This article focuses on specific methods developed to evaluate the whole sensing chain, with an emphasis on (i) commercially-available optoelectronic instruments and (ii) sensing cable. A number of additional considerations for a successful pairing of these two must be taken into account for successful field applications. These considerations are further developed within this article and illustrated with practical applications of water leakage detection in dikes and concrete structures monitoring, making use of distributed temperature and strain sensing based on Rayleigh, Raman, and Brillouin scattering in optical fibers. They include an adequate choice of working wavelengths, dedicated localization processes, choices of connector type, and further include a useful selection of traditional reference sensors to be installed nearby the optical fiber sensors, as well as temperature compensation in case of strain sensing.
As a complement to classical sensors, Distributed Optical Fiber Sensors now play a prominent role in several engineering fields and act as an antenna array. Depending of the devices used (Raman, Rayleigh, or Brillouin scattering), measurement record depend on temperature, strain, or pressure profile. As the wanted signal is often hidden by noise and other undesired sources, we can express the problem as a source separation problem. In this paper, we show that with the help of recent techniques based on data decomposition and source separation (PCA, ICA NMF techniques) from the virtual antenna, we can accurately identify water leakages from a noisy Raman spectra or a strain profile from Brillouin spectra with a spatial resolution of 1cm instead of 1 meter for classical devices.
Distributed Optical Fiber Sensing systems (DOFSS) are composed by optical fibers wrapped in strain sensing cables, coupled with Brillouin interrogators. DOFSS are increasingly used for Structural Health Monitoring (SHM) as they can provide continuous strain profiles along the optical fiber localized in the structure. Raw Brillouin measurements consist in gain-frequency curves with a Lorentzian shape. Strain is generally assessed thanks to the abscissa of the maximum of the gain curve. Two new factors are introduced. They are sensitive to asymmetry and broadening of the Brillouin gain curve which can highlight strain gradient within the spatial resolution of the interrogator. These parameters could be used to detect more efficiently local events and improve instrument algorithm.
International audienceDistributed optical fiber sensors have gained an increasingly prominent role in structural-health monitoring. These are composed of an optical fiber cable in which a light impulse is launched by an opto-electronic device. The scattered light is of interest in the spectral domain: the spontaneous Brillouin spectrum is centered on the Brillouin frequency, which is related to the local strain and temperature changes in the optical fiber. When coupled with an industrial Brillouin optical time-domain analyzer (B-OTDA), an optical fiber cable can provide distributed measurements of strain and/or temperature, with a spatial resolution over kilometers of 40 cm. This paper focuses on the functioning of a B-OTDA device, where we address the problem of the improvement of spatial resolution. We model a Brillouin spectrum measured within an integration base of 1 m as the superposition of the elementary spectra contained in the base. Then, the spectral distortion phenomenon can be mathematically explained: if the strain is not constant within the integration base, the Brillouin spectrum is composed of several elementary spectra that are centered on different local Brillouin frequencies. We propose a source separation methodology approach to decompose a measured Brillouin spectrum into its spectral components. The local Brillouin frequencies and amplitudes are related to a portion of the integration base where the strain is constant. A layout algorithm allows the estimation of a strain profile with new spatial resolution chosen by the user. Numerical tests enable the finding of the optimal parameters, which provides a reduction to 1 cm of the 40-cm spatial resolution of the B-OTDA device. These parameters are highlighted during a comparison with a reference strain profile acquired by a 5-cm-resolution Rayleigh scatter analyzer under controlled conditions. In comparison with the B-OTDA strain profile, our estimated strain profile has better accuracy, with centimeter spatial resolut ion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.