Hundreds of waterborne disease outbreaks (WBDO) of acute gastroenteritis (AGI) due to contaminated tap water are reported in developed countries each year. Such outbreaks are probably under-detected. The aim of our study was to develop an integrated approach to detect and study clusters of AGI in geographical areas with homogeneous exposure to drinking water. Data for the number of AGI cases are available at the municipality level while exposure to tap water depends on drinking water networks (DWN). These two geographical units do not systematically overlap. This study proposed to develop an algorithm which would match the most relevant grouping of municipalities with a specific DWN, in order that tap water exposure can be taken into account when investigating future disease outbreaks. A space-time detection method was applied to the grouping of municipalities. Seven hundred and fourteen new geographical areas (groupings of municipalities) were obtained compared with the 1,310 municipalities and the 1,706 DWN. Eleven potential WBDO were identified in these groupings of municipalities. For ten of them, additional environmental investigations identified at least one event that could have caused microbiological contamination of DWN in the days previous to the occurrence of a reported WBDO.
Disease mapping aims to determine the underlying disease risk from scattered epidemiological data and to represent it on a smoothed colored map. This methodology is based on Bayesian inference and is classically dedicated to non-infectious diseases whose incidence is low and whose cases distribution is spatially (and eventually temporally) structured. Over the last decades, disease mapping has received many major improvements to extend its scope of application: integrating the temporal dimension, dealing with missing data, taking into account various a prioris (environmental and population covariates, assumptions concerning the repartition and the evolution of the risk), dealing with overdispersion, etc. We aim to adapt this approach to model rare infectious diseases proposing specific and generic variants of this methodology. In the context of a contagious disease, the outcome of a primary case can in addition generate secondary occurrences of the pathology in a close spatial and temporal neighborhood; this can result in local overdispersion and in higher spatial and temporal dependencies due to direct and/or indirect transmission. In consequence, we test models including a Negative Binomial distribution (instead of the usual Poisson distribution) to deal with local overdispersion. We also use a specific spatio-temporal link in order to better model the stronger spatial and temporal dependencies due to the transmission of the disease. We have proposed and tested 60 Bayesian hierarchical models on 400 simulated datasets and bovine tuberculosis real data. This analysis shows the relevance of the CAR (Conditional AutoRegressive) processes to deal with the structure of the risk. We can also conclude that the negative binomial models outperform the Poisson models with a Gaussian noise to handle overdispersion. In addition our study provided relevant maps which are congruent with the real risk (simulated data) and with the knowledge concerning bovine tuberculosis (real data).
Disease mapping aims to determine the underlying disease risk scattered from health data. This methodology enables to represent this disease risk by a gradation of colours on a map. Our aim is to apply disease mapping to infectious diseases, when a primary case can result in secondary cases, by direct or vector transmission. Contagion can lead to overdispersion and strengthen spatial and temporal structures. This study highlighted the relevance of using the negative binomial distribution to model such data. It also showed the need to take into account both spatial and temporal dimensions in this type of epidemiological study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.