Surrogate models are often used to reduce the cost of design optimization problems that involve computationally costly models, such as computational fluid dynamics simulations. However, the number of evaluations required by surrogate models usually scales poorly with the number of design variables, and there is a need for both better constraint formulations and multimodal function handling. To address this issue, we developed a surrogate-based gradient-free optimization algorithm that can handle cases where the function evaluations are expensive, the computational budget is limited, the functions are multimodal, and the optimization problem includes nonlinear equality or inequality constraints. The proposed algorithm-super efficient global optimization coupled with mixture of experts (SEGOMOE)can tackle complex constrained design optimization problems through the use of an enrichment strategy based on a mixture of experts coupled with adaptive surrogate models. The performance of this approach was evaluated for analytic constrained and unconstrained problems, as well as for a multimodal aerodynamic shape optimization problem with 17 design variables and an equality constraint. Our results showed that the method is efficient and that the optimum is much less dependent on the starting point than the conventional gradient-based optimization.
Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all approximation methods, polynomial chaos expansion is one of the most efficient to calculate variancebased sensitivity indices. Indeed, their computation is analytically derived from the expansion coefficients but without error estimators of the meta-model approximation. In order to evaluate the reliability of these indices, we propose to build confidence intervals by bootstrap re-sampling on the experimental design used to estimate the polynomial chaos approximation. Since the evaluation of the sensitivity indices is obtained with confidence intervals, it is possible to find a design of experiments allowing the computation of sensitivity indices with a given accuracy.
This paper presents methodological investigations performed in research activities in the field of MDO in overall aircraft design in the ongoing EU funded research project AGILE. AGILE is developing the next generation of aircraft Multidisciplinary Design and Optimization processes, which target significant reductions in aircraft development costs and time to market, leading to cheaper and greener aircraft solutions. The paper introduces the AGILE project structure and describes the achievements of the 1st year (Design Campaign 1) leading to a reference distributed MDO system. A focus is then made on the different novel optimization techniques studied during the 2nd year, all willing to ease the optimization of complex work flows, characterized by high degree of discipline interdependencies, high number of design variables in the context of multi-level and multi-partner collaborative engineering projects. Then the implementation of these methods in the enhanced MDO framework is discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.