International audienceA specific methodology was developed to collate the interlayer configurations resulting from Grand-Canonical Monte Carlo (GCMC) simulations with experimental X-ray and neutron diffraction data for two synthetic Na-saturated saponites having contrasting layer charge. Numerical simulations were performed assuming different existing sets of atomic partial charge and Lennard-Jones parameters for clay and water. For each parameter set and for the two samples in both the mono- and bihydrated states, the water contents resulting from GCMC simulations were first compared to water vapor desorption gravimetry data. The density distributions of interlayer species were then used to generate 00l intensities that were compared to X-ray and neutron diffraction data, the latter being recorded on both hydrogenated and deuterated specimens. The CLAYFF model [Cygan et al. J. Phys. Chem. B2004, 108, 1255] is shown to better account for water content and organization compared to the model developed by Skipper et al. (Clays Clay Miner.1995, 43, 285) and modified by Smith (Langmuir1998, 14, 5959). However, diffraction patterns calculated for bihydrated samples from CLAYFF simulations did not match satisfactorily the diffraction data. Lennard-Jones parameters were thus modified for oxygen atoms from the clay layer. When combined with the SPC/E water model, this modified version of CLAYFF allows matching experimental water contents and fitting the complete set of diffraction data. Relevant information may thus be derived on the influence of layer charge on the orientational properties of interlayer water molecules which differs for the different clay models. Finally, the approach used in the present study proved powerful for assessing atomic interaction parameters considered for computational simulations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.