We present an Active Learning (AL) strategy for re-using a deep Convolutional Neural Network (CNN)-based object detector on a new dataset. This is of particular interest for wildlife conservation: given a set of images acquired with an Unmanned Aerial Vehicle (UAV) and manually labeled gound truth, our goal is to train an animal detector that can be re-used for repeated acquisitions, e.g. in follow-up years. Domain shifts between datasets typically prevent such a direct model application. We thus propose to bridge this gap using AL and introduce a new criterion called Transfer Sampling (TS). TS uses Optimal Transport to find corresponding regions between the source and the target datasets in the space of CNN activations. The CNN scores in the source dataset are used to rank the samples according to their likelihood of being animals, and this ranking is transferred to the target dataset. Unlike conventional AL criteria that exploit model uncertainty, TS focuses on very confident samples, thus allowing a quick retrieval of true positives in the target dataset, where positives are typically extremely rare and difficult to find by visual inspection. We extend TS with a new window cropping strategy that further accelerates sample retrieval. Our experiments show that with both strategies combined, less than half a percent of oracle-provided labels are enough to find almost 80% of the animals in challenging sets of UAV images, beating all baselines by a margin.
We study the problem of landuse characterization at the urban-object level using deep learning algorithms. Traditionally, this task is performed by surveys or manual photo interpretation, which are expensive and difficult to update regularly. We seek to characterize usages at the single object level and to differentiate classes such as educational institutes, hospitals and religious places by visual cues contained in side-view pictures from Google Street View (GSV). These pictures provide geo-referenced information not only about the material composition of the objects but also about their actual usage, which otherwise is difficult to capture using other classical sources of data such as aerial imagery. Since the GSV database is regularly updated, this allows to consequently update the landuse maps, at lower costs than those of authoritative surveys. Because every urban-object is imaged from a number of viewpoints with street-level pictures, we propose a deeplearning based architecture that accepts arbitrary number of GSV pictures to predict the fine-grained landuse classes at the object level. These classes are taken from OpenStreetMap. A quantitative evaluation of the area of Île-de-France, France shows that our model outperforms other deep learning-based methods, making it a suitable alternative to manual landuse characterization.
This is the pre-acceptance version, to read the final version published in the ISPRS Journal of Photogrammetry and Remote Sensing, please go to: https://doi.org/10. 1016/j.isprsjprs.2018.11.010 Rural building mapping is paramount to support demographic studies and plan actions in response to crisis that affect those areas. Rural building annotations exist in OpenStreetMap (OSM), but their quality and quantity are not sufficient for training models that can create accurate rural building maps. The problems with these annotations essentially fall into three categories: (i) most commonly, many annotations are geometrically misaligned with the updated imagery; (ii) some annotations do not correspond to buildings in the images (they are misannotations or the buildings have been destroyed); and (iii) some annotations are missing for buildings in the images (the buildings were never annotated or were built between subsequent image acquisitions). First, we propose a method based on Markov Random Field (MRF) to align the buildings with their annotations. The method maximizes the correlation between annotations and a building probability map while enforcing that nearby buildings have similar alignment vectors. Second, the annotations with no evidence in the building probability map are removed. Third, we present a method to detect non-annotated buildings with predefined shapes and add their annotation.The proposed methodology shows considerable improvement in accuracy of the OSM annotations for two regions of Tanzania and Zimbabwe, being more accurate than state-of-the-art baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.