HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The number of vehicles equipped with radars on the road has been increasing for years and is expected to reach 50% of cars by 2030. This rapid rise in radars will likely increase the risk of harmful interference, especially since radar specifications from standardization bodies (e.g., ETSI) provide requirements in terms of maximum transmit power but do no mandate specific radar waveform parameters nor channel access scheme policies. Techniques for interference mitigation are thus becoming very important to ensure the long-term correct operation of radars and upper-layer ADAS systems that depend on them in this complex environment. In our previous work, we have shown that organizing the radar band into time-frequency resources that do not interfere with each other vastly reduces the amount of interference by facilitating band sharing. In this paper, a metaheuristic is presented to find the optimal resource sharing between radars, knowing their relative positions and thereby the line-of-sight and non-line-of-sight interference risks during a realistic scenario. The metaheuristic aims at optimally minimizing interference while minimizing the number of resource changes that radars have to make. It is a centralized approach where everything about the system is known (e.g., the past and future positions of the vehicles). This and the high computational load induce that this algorithm is not meant to be used in real-time. However, the metaheuristic approach can be extremely useful for finding near optimal solutions in simulations, allowing for the extraction of efficient patterns, or as data generation for machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.