In this paper, we demonstrate the possibility to trap and sort labeled cells under flow conditions using a microfluidic device with an integrated flat micro-patterned hard magnetic film. The proposed technique is illustrated using a cell suspension containing a mixture of Jurkat cells and HEK (Human Embryonic Kidney) 293 cells. Prior to sorting experiments, the Jurkat cells were specifically labeled with immunomagnetic nanoparticles, while the HEK 293 cells were unlabeled. Droplet-based experiments demonstrated that the Jurkat cells were attracted to regions of maximum stray field flux density while the HEK 293 cells settled in random positions. When the mixture was passed through a polydimethylsiloxane (PDMS) microfluidic channel containing integrated micromagnets, the labeled Jurkat cells were selectively trapped under fluid flow, while the HEK cells were eluted towards the device outlet. Increasing the flow rate produced a second eluate much enriched in Jurkat cells, as revealed by flow cytometry. The separation efficiency of this biocompatible, compact micro-fluidic separation chamber was compared with that obtained using two commercial magnetic cell separation kits.
We describe a new, simple process for fabricating transparent quadrupolar electrode arrays enabling large-scale particle assembly by means of dielectrophoresis. In the first step, interdigitated electrode arrays are made by chemical wet etching of indium tin oxide (ITO). Then, the transition from a bipolar to a quadrupolar electrode arrangement is obtained by covering the electrode surface with a thin poly(dimethylsiloxane) (PDMS) film acting as an electrical insulation layer in which selective openings are formed using bond-detach lithography. The PDMS insulating layer thickness was optimized and controlled by adjusting experimental parameters such as the PDMS viscosity (modulated by the addition of heptane) and the PDMS spin-coating velocity. The insulating character of the PDMS membrane was successfully demonstrated by performing a dielectrophoretic assembly of polystyrene particles using interdigitated electrodes with and without a PDMS layer. The results show that the patterned PDMS film functions properly as an electrical insulation layer and allows the reconfiguration of the electric field cartography. Electric field simulations were performed in both configurations to predict the dielectrophoretic behavior of the particles. The simulation results are in perfect agreement with experiments, in which we demonstrated the formation of concentrated clusters of polystyrene particles and living cells of regular size and shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.