The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Although insulin-like growth factor I (IGF-I) is a mitogenic growth factor, its role in tumorigenesis is unclear. We therefore transfected wild-type and truncated (-subunit mutant ('52STOP) human IGF-I receptor cDNAs into Rat-1 fibroblasts. Rat-1 transfectants expressed 2.5-to 7-fold increased IGF-I receptor mass, while the Kd for IGF-I binding was unchanged. The Rat-i cells transfected with wild-type receptor cDNA responded to in vitro IGF-I treatment by increased proliferation and DNA synthesis. Cells overexpressing wild-type receptors were also transformed as emdenced by ligand-dependent colony proliferation in soft agar. After injection into athymic nude mice, all wild-type transfectants formed solid sarcomas within 3 weeks, and ex vivo tumor cell assays confirmed continued overexpression of human IGF-I receptors. In contrast, both DNA synthesis and proliferation of 952STOP-transfected cells were attenuated below that of untransfected cells. 952STOP cells were nonresponsive to IGF-I in vitro and were unable to sustain anchorageindependent growth. No tumors were induced for up to 8 weeks after h jection of 952STOP transfectants into athymic mice, despite the presence of demonstrable endogenous IGF-I receptors on the 952STOP-transfected cells. Therefore, "52STOP behaves as a dominant negative inhibitor of endogenous IGF-I receptor function, probably by assembling nonfunctional hybrid rat/mutant human receptor tetramers.
Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXX trunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXX trunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.
Adrenocortical carcinoma (ACC) is a rare neoplasm with a heterogeneous outcome and limited treatment options. To understand its molecular and genomic landscape as a part of The Cancer Genome Atlas (TCGA) project, we performed the genomic, transcriptomic, epigenomic and proteomic profiling of 91 ACCs. We identified potential driving alterations including amplifications (TERT, TERF2 and CDK4), deletions (ZNRF3, CDKN2A and RB1) and point mutations in genes unknown to participate in adrenal disease (RPL22) and genes known to initiate familial syndromes that occasionally include adrenocortical neoplasms (TP53, CTNNB1, PRKAR1A, MEN1). The finding of PRKAR1A expands the catalogue of pathogenic pathways underlying ACC, suggesting of the protein kinase alpha signaling pathway as a potential target for molecular interventions. Novel transcript fusions potentially leading to overactive kinases included EXOSC10-MTOR and PPP1CB-BRE. DNA copy number analysis unveiled prevalent DNA losses leading to hypodiploidy as well as whole genome doubling (WGD) in 51% of ACC. The similar penetrance of loss of heterozygosity before and after WGD suggests a sequential development from hypodiploidy to polyploidy along the doubling in a subset of ACCs, which was endorsed by the worse outcome for WGD samples relative to nonWGD ACCs. An association between TERT expression and WGD was observed, suggesting a role for telomere regulation. These findings present ACC as a model disease for studies of WGD which is a frequent event in many tumor types. Unsupervised clustering of DNA methylation, copy number, gene expression, miRNA expression and protein abundance converged into three classes with specific biological characteristics and a respective median event free survival of 8, 38 and >100 months (p-value 1.7e-13). Comparison of the subtypes suggested additional drivers such as protein kinase C (PKC) phosphorylation and upregulation of a miRNA cluster at chromosome Xq27.3, which complemented the genomic alterations identified in these subtypes. To gain more insights into this rare cancer type, we placed ACC in a broader context of cancer genomic profiles including an array of other cancer types. These analyses revealed interesting shared features, including beta-catenin activation with a subset of endometroid cancer, DNA mismatch repair gene mutational signature with gastrointestinal cancers and a smoking signature with lung cancer. These findings highlight the commonalities between ACC and other lineages of cancer. Taken together, we found Wnt signaling pathway and p53/Rb signaling pathway were the most frequently altered pathways in ACC. Meanwhile, new players surfaced from our analyses including the PKA and PKC pathways. Our results present a comprehensive genomic landscape and refined molecular classification of ACC improve our understanding of its pathogenesis, and will ultimately improve the care of patients. Citation Format: Siyuan Zheng, Andrew D. Cherniack, Ninad Dewal, Richard A. Moffitt, Ludmila Danilova, Bradley A. Murray, Antonio M. Lerario, Tobias Else, Theo A. Knijnenburg, Giovanni Ciriello, Seungchan Kim, Guillaume Assie, Olena Morozova, Rehan Akbani, Juliann Shih, Katherine A. Hoadley, Toni K. Choueiri, Jens Waldmann, Ozgur Mete, Gordon A. Robertson, Matthew Meyerson, Michael J. Demeure, Felix Beuschlein, Anthony Gill, Ana C. Latronico, Maria C. Fragosa, Leslie Cope, Electron Kebebew, Mouhammed A. Habra, Timothy G. Whitsett, Kimberly J. Bussey, William E. Rainey, Sylvia Asa, Jérôme Bertherat, Martin Fassnacht, David A. Wheeler, The Cancer Genome Atlas Research Network, Gary D. Hammer, Thomas J. Giordano, Roel Verhaak. Comprehensive Pan-Genomic characterization of adrenocortical carcinoma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2976. doi:10.1158/1538-7445.AM2015-2976
Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly understood, with limited comprehension of its associations with specific mutational processes, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in 1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased mutational load across cancer types, irrespective of underlying mutational class. The proportion of mutations attributed to several mutational signatures of unknown aetiology directly associates with the level of hypoxia, suggesting underlying mutational processes for these signatures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajectories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary landscapes of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.