The demand for joining dissimilar metals has exponentially increased due to the global concerns about climate change, especially for electric vehicles in the automotive industry. Ultrasonic welding (USW) surges as a very promising technique to join dissimilar metals, providing strength and electric conductivity, in addition to avoid metallurgical defects, such as the formation of intermetallic compounds, brittle phases and porosities. However, USW is a very sensitive process, which depends on many parameters. This work evaluates the impact of the process parameters on the quality of ultrasonic spot welds between copper and aluminium plates. The weld quality is assessed based on the tensile strength of the joints and metallographic examination of the weld cross-sections. Furthermore, the welding energy is examined for the different welding conditions. This is done to evaluate the influence of each parameter on the heat input resulting from friction at the weld interface and on the weld quality. From the obtained results, it was possible to optimise parameters to achieve satisfactory weld quality in 1.0 mm thick Al–Cu plate joints in terms of mechanical and metallurgical properties.
Ultrasonic welding is increasingly used in industry. In this paper, the influence of ultrasonic welding parameters (USW) on the joint strength and quality was analysed. The properties of the USW joints depend on many factors. The work focuses on the influence of the technological parameters and the surface properties of welded EN Cu-ETP copper sheets with a thickness of 1 mm. The impact of the process parameters, such as welding time, pressure, vibration amplitude and the surface roughness on the lap shear strength and the metallographic weld properties was analysed. The welding energy for each variant was also determined. The research was conducted on the basis of a full factorial design of experiments. The optimal process parameters were determined to obtain high-quality joints in terms of strength and weld quality. Based on the presented experimental study, it was demonstrated that the ultrasonic vibration amplitude has the greatest impact on the joint strength. A surface preparation with acetone resulted in the highest tensile strength and welding energy and, making any additional surface treatment prior to welding unnecessary.
Ultrasonic welding (USW) is a solid-state welding process based on the application of high frequency vibration energy to the workpiece to produce the internal friction between the faying surface and the local heat generation required to promote the joining. The short welding time and the low heat input, the absence of fumes, sparks or flames, and the automation capacity make it particularly interesting for several fields, such as electrical/electronic, automotive, aerospace, appliance, and medical products industries. The main problems that those industries have to face are related to the poor weld quality due the improper selection of weld parameters. In the present work, 0.3 mm thick copper sheets were joined by USW varying the welding time, pressure, and vibration amplitude. The influence of the process variables on the characteristics of the joints and weld strength is investigated by using the analysis of variance. The results of the present work indicate that welding time is the main factor affecting the energy absorbed during the welding, followed by the pressure and amplitude. The shear strength, on the other hand, resulted mostly influenced by the amplitude, while the other parameters have a limited effect. Regardless the welding configuration adopted, most welds registered a failure load higher than the base material pointing out the feasibility of the USW process to join copper sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.