Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K ATP ) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K ATP channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K ATP channel blocker glibenclamide. These results suggest that activation of hypothalamic K ATP channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Obesity is associated with resistance of skeletal muscle to insulin-mediated glucose uptake, as well as resistance of different organs and tissues to other metabolic and vascular actions of insulin. In addition, the body is exquisitely sensitive to nutrient imbalance, with energy excess or a high-fat diet rapidly increasing insulin resistance, even before noticeable changes occur in fat mass. There is a growing acceptance of the fact that, as well as acting as a storage site for surplus energy, adipose tissue is an important source of signals relevant to, inter alia, energy homeostasis, fertility, and bone turnover. It has also been widely recognized that obesity is a state of low-grade inflammation, with adipose tissue generating substantial quantities of proinflammatory molecules. At a cellular level, the understanding of the signaling pathways responsible for such alterations has been intensively investigated. What is less clear, however, is how alterations of physiology, and of signaling, within one cell or one tissue are communicated to other parts of the body. The concepts of cell signals being disseminated systemically through a circulating "endocrine" signal have been complemented by the view that local signaling may similarly occur through autocrine or paracrine mechanisms. Yet, while much elegant work has focused on the alterations in signaling that are found in obesity or energy excess, there has been less attention paid to ways in which such signals may propagate to remote organs. This review of the integrative physiology of obesity critically appraises the data and outlines a series of hypotheses as to how interorgan cross talk takes place. The hypotheses presented include the "fatty acid hypothesis,", the "portal hypothesis,", the "endocrine hypothesis,", the "inflammatory hypothesis,", the "overflow hypothesis,", a novel "vasocrine hypothesis," and a "neural hypothesis," and the strengths and weaknesses of each hypothesis are discussed.
Obesity is associated with increased adipose tissue macrophage (ATM) infiltration, and rodent studies suggest that inflammatory factors produced by ATMs contribute to insulin resistance and type 2 diabetes. However, a relationship between ATM content and insulin resistance has not been clearly established in humans. Since thiazolidinediones attenuate adipose tissue inflammation and improve insulin sensitivity, we examined the temporal relationship of the effects of pioglitazone on these two parameters. The effect of 10 and 21 days of pioglitazone treatment on insulin sensitivity in 26 diabetic subjects was assessed by hyperinsulinemic-euglycemic clamp studies. Because chemoattractant factors, cytokines, and immune cells have been implicated in regulating the recruitment of ATMs, we studied their temporal relationship to changes in ATM content. Improved hepatic and peripheral insulin sensitivity was seen after 21 days of pioglitazone. We found early reductions in macrophage chemoattractant factors after only 10 days of pioglitazone, followed by a 69% reduction in ATM content at 21 days and reduced ATM activation at both time points. Although markers for dendritic cells and neutrophils were reduced at both time points, there were no significant changes in regulatory T cells. These results are consistent with an association between adipose macrophage content and systemic insulin resistance in humans.
Macrophages are more abundant in adipose tissue from obese individuals than from those of normal weight and may contribute to the metabolic consequences of obesity by producing various circulating factors. One of these factors is plasminogen activator inhibitor-1 (PAI-1), which contributes to both atherosclerosis and insulin resistance. Because nutritional factors appear to regulate PAI-1 expression, we hypothesized that exposure to fatty acids and adipocyte secretory products could stimulate production of PAI-1 by adipose macrophages. Increased free fatty acid (FFA) concentrations in blood for 5 hours in nondiabetic, overweight subjects markedly suppressed insulin-stimulated glucose uptake and raised circulating PAI-1 concentrations, with a concomitant increase in the expression of the PAI-1 gene in adipose tissue. FFAs also rapidly increased PAI-1 gene expression in adipose macrophages and PAI-1 protein immunofluorescence surrounding these cells. By contrast, PAI-1 expression in circulating monocytes was very low and was not affected by raising the concentration of FFAs. Medium from cultured adipocytes stimulated PAI-1 expression in cultured macrophages and potentiated the increase in PAI-1 messenger RNA expression in response to FFAs. Together, our data suggest that adipocyte-derived factors prime adipose macrophages so that they respond to nutritional signals (FFAs) by releasing a key inflammatory adipokine, PAI-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.