Vancomycin resistance in Enterococcus faecium BM4147 is mediated by vancomycin resistance proteins VanA and VanH. VanA is a D-alanine:D-alanine ligase of altered substrate specificity [Bugg, T. D. H., Dutka-Malen, S., Arthur, M., Courvalin, P., & Walsh, C. T. (1991) Biochemistry 30, 2017-2021], while the sequence of VanH is related to those of alpha-keto acid dehydrogenases [Arthur, M., Molinas, C., Dutka-Malen, S., & Courvalin, P. (1991) Gene (submitted)]. We report purification of VanH to homogeneity, characterization as a D-specific alpha-keto acid dehydrogenase, and comparison with D-lactate dehydrogenases from Leuconostoc mesenteroides and Lactobacillus leichmanii. VanA was found to catalyze ester bond formation between D-alanine and the D-hydroxy acid products of VanH, the best substrate being D-2-hydroxybutyrate (Km = 0.60 mM). The VanA product D-alanyl-D-2-hydroxybutyrate could then be incorporated into the UDPMurNAc-pentapeptide peptidoglycan precursor by D-Ala-D-Ala adding enzyme from Escherichia coli or by crude extract from E. faecium BM4147. The vancomycin binding constant of a synthetic modified peptidoglycan analogue N-acetyl-D-alanyl-D-2-hydroxybutyrate (Kd greater than 73 mM) was greater than 1000-fold higher than the binding constant for N-acetyl-D-alanyl-D-alanine (Kd = 54 microM), partly due to the disruption of a hydrogen bond in the vancomycin-target complex, thus providing a molecular rationale for high-level vancomycin resistance.
PCR assay that allows simultaneous detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci (Enterococcus faecium, E. faecalis, E. gallinarum, and E. casseliflavus) was developed. This assay was based on specific amplification of internal fragments of genes encoding D-alanine:D-alanine ligases and related glycopeptide resistance proteins. The specificity of the assay was tested on 5 well-characterized glycopeptide-resistant strains and on 15 susceptible enterococcal type strains. Clinical isolates of enterococci that could not be identified to the species level by conventional methods were identified by the PCR test. This assay offers a specific and rapid alternative to antibiotic susceptibility tests, in particular for detection of low-level vancomycin resistance.
Cloning and nucleotide sequencing indicated that transposon Tn1546 from Enterococcus faecium BM4147 encodes a 23,365 Da protein, VanX, required for glycopeptide resistance. The vanX gene was located downstream from genes encoding the VanA ligase and the VanH dehydrogenase which synthesize the depsipeptide D-alanyl-D-lactate (D-Ala-D-Lac). In the presence of ramoplanin, an Enterococcus faecalis JH2-2 derivative producing VanH, VanA and VanX accumulated mainly UDP-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Lac (pentadepsipeptide) and small amounts of UDP-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala (pentapeptide) in the ratio 49:1. Insertional inactivation of vanX led to increased synthesis of pentapeptide with a resulting change in the ratio of pentadepsipeptide: pentapeptide to less than 1:1. Expression of vanX in E. faecalis and Escherichia coli resulted in production of a D,D-dipeptidase that hydrolysed D-Ala-D-Ala. Pentadepsipeptide, pentapeptide and D-Ala-D-Lac were not substrates for the enzyme. These results establish that VanX is required for production of a D,D-dipeptidase that hydrolyses D-Ala-D-Ala, thereby preventing pentapeptide synthesis and subsequent binding of glycopeptides to D-Ala-D-Ala-containing peptidoglycan precursors at the cell surface.
High-level glycopeptide resistance in Enterococcus faecium BM4147 is mediated by a 38-kDa protein VanA, whose amino acid sequence is related to Gram-negative D-alanine:D-alanine (D-Ala-D-Ala) ligases [Dutka-Malen, S., Molinas, C., Arthur, M., & Courvalin, P. (1990) Mol. Gen. Genet. 224, 364-372]. We report purification of VanA and demonstrate that it has D-Ala-D-Ala ligase activity but has substantially modified substrate specificity, compared with Gram-negative D-Ala-D-Ala ligases. VanA preferentially condenses D-Ala with D-Met or D-Phe, raising the possibility that its cellular role is to synthesize a modified cell-wall component, which is subsequently not recognized by vancomycin.
Volume 33, no. 1, p. 25, Table 1: The sequences and GC contents for E 1 , F 1 , and F 2 should read as follows: ϩATCAAGTA CAGTTAGTCTT and 32%; ϩGCAAGGCTTCTTAGAGA and 47%; and ϪCATCGTGTAAGCTAACTTC and 42%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.