Several demographic and selective events occurred during the domestication of wheat from the allotetraploid wild emmer (Triticum turgidum ssp. dicoccoides). Cultivated wheat has since been affected by other historical events. We analyzed nucleotide diversity at 21 loci in a sample of 101 individuals representing 4 taxa corresponding to representative steps in the recent evolution of wheat (wild, domesticated, cultivated durum, and bread wheats) to unravel the evolutionary history of cultivated wheats and to quantify its impact on genetic diversity. Sequence relationships are consistent with a single domestication event and identify 2 genetically different groups of bread wheat. The wild group is not highly polymorphic, with only 212 polymorphic sites among the 21,720 bp sequenced, and, during domestication, diversity was further reduced in cultivated forms--by 69% in bread wheat and 84% in durum wheat--with considerable differences between loci, some retaining no polymorphism at all. Coalescent simulations were performed and compared with our data to estimate the intensity of the bottlenecks associated with domestication and subsequent selection. Based on our 21-locus analysis, the average intensity of domestication bottleneck was estimated at about 3--giving a population size for the domesticated form about one third that of wild dicoccoides. The most severe bottleneck, with an intensity of about 6, occurred in the evolution of durum wheat. We investigated whether some of the genes departed from the empirical distribution of most loci, suggesting that they might have been selected during domestication or breeding. We detected a departure from the null model of demographic bottleneck for the hypothetical gene HgA. However, the atypical pattern of polymorphism at this locus might reveal selection on the linked locus Gsp1A, which may affect grain softness--an important trait for end-use quality in wheat.
We study the rest-frame ( ) color-magnitude relation in four clusters at redshifts 0.7-0.8, drawn from the U Ϫ V ESO Distant Cluster Survey (EDisCS). We confirm that the red-sequence galaxies in these clusters can be described as an old, passively evolving population, and we demonstrate that, by comparison with the Coma Cluster, there has been significant evolution in the stellar mass distribution of red-sequence galaxies since . The EDisCS z ∼ 0.75 clusters exhibit a deficiency of low-luminosity passive red galaxies. Defining as "faint" all galaxies in the passive evolution-corrected range , the luminous-to-faint ratio of red-sequence galaxies varies from 0.4 տ L/L տ 0.1 * for the Coma Cluster to for the high-redshift clusters. These results exclude a syn-0.34 ע 0.06 0.81 ע 0.18 chronous formation of all red-sequence galaxies and suggest that a large fraction of the faint red galaxies in current clusters moved on to the red sequence relatively recently. Their star formation activity presumably came to an end at . z Շ 0.8
Abstract. We present spectroscopic observations of galaxies in 4 clusters at z = 0.7−0.8 and in one cluster at z ∼ 0.5 obtained with the FORS2 spectrograph on the VLT as part of the ESO Distant Cluster Survey (EDisCS), a photometric and spectroscopic survey of 20 intermediate to high redshift clusters. We describe our target selection, mask design, observation and data reduction procedures, using these first 5 clusters to demonstrate how our strategies maximise the number of cluster members for which we obtain spectroscopy. We present catalogues containing positions, I-band magnitudes and spectroscopic redshifts for galaxies in the fields of our 5 clusters. These contain 236 cluster members, with the number of members per cluster ranging from 30 to 67. Our spectroscopic success rate, i.e. the fraction of spectroscopic targets which are cluster members, averages 50% and ranges from 30% to 75%. We use a robust biweight estimator to measure cluster velocity dispersions from our spectroscopic redshift samples. We also make a first assessment of substructure within our clusters. The velocity dispersions range from 400 to 1100 km s −1 . Some of the redshift distributions are significantly non-Gaussian and we find evidence for significant substructure in two clusters, one at z ∼ 0.79 and the other at z ∼ 0.54. Both have velocity dispersions exceeding 1000 km s −1 but are clearly not fully virialised; their velocity dispersions may thus be a poor indicator of their masses. The properties of these first 5 EDisCS clusters span a wide range in redshift, velocity dispersion, richness and substructure, but are representative of the sample as a whole. Spectroscopy for the full dataset will allow a comprehensive study of galaxy evolution as a function of cluster environment and redshift.
We present the ESO Distant Cluster Survey (EDisCS), a survey of 20 fields containing distant galaxy clusters with redshifts ranging from 0.4 to almost 1.0. Candidate clusters were chosen from among the brightest objects identified in the Las Campanas Distant Cluster Survey, half with estimated redshift z est ∼ 0.5 and half with z est ∼ 0.8. They were confirmed by identifying red sequences in moderately deep two colour data from VLT/FORS2. For confirmed candidates we have assembled deep three-band optical photometry using VLT/FORS2, deep near-infrared photometry in one or two bands using NTT/SOFI, deep optical spectroscopy using VLT/FORS2, wide field imaging in two or three bands using the ESO Wide Field Imager, and HST/ACS mosaic images for 10 of the most distant clusters. This first paper presents our sample and the VLT photometry we have obtained. We present images, colour-magnitude diagrams and richness estimates for our clusters, as well as giving redshifts and positions for the brightest cluster members. Subsequent papers will present our infrared photometry, spectroscopy, HST and wide-field imaging, as well as a wealth of further analysis and science results. Our reduced data become publicly available as these papers are accepted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.