Increase of influenza vaccination coverage rates during the COVID-19 pandemic and implications for the upcoming influenza season in northern hemisphere countries and Australia.
Background
Primary Sjögren’s Syndrome (pSS) is a rare autoimmune disease that is difficult to diagnose due to a variety of clinical presentations, resulting in misdiagnosis and late referral to specialists. To improve early-stage disease recognition, this study aimed to develop an algorithm to identify possible pSS patients in primary care. We built a machine learning algorithm which was based on combined healthcare data as a first step towards a clinical decision support system.
Method
Routine healthcare data, consisting of primary care electronic health records (EHRs) data and hospital claims data (HCD), were linked on patient level and consisted of 1411 pSS and 929,179 non-pSS patients. Logistic regression (LR) and random forest (RF) models were used to classify patients using age, gender, diseases and symptoms, prescriptions and GP visits.
Results
The LR and RF models had an AUC of 0.82 and 0.84, respectively. Many actual pSS patients were found (sensitivity LR = 72.3%, RF = 70.1%), specificity was 74.0% (LR) and 77.9% (RF) and the negative predictive value was 99.9% for both models. However, most patients classified as pSS patients did not have a diagnosis of pSS in secondary care (positive predictive value LR = 0.4%, RF = 0.5%).
Conclusion
This is the first study to use machine learning to classify patients with pSS in primary care using GP EHR data. Our algorithm has the potential to support the early recognition of pSS in primary care and should be validated and optimized in clinical practice. To further enhance the algorithm in detecting pSS in primary care, we suggest it is improved by working with experienced clinicians.
Background: This study is part of the EU-funded project HarmonicSS, aimed at improving the treatment and diagnosis of primary Sjögren's syndrome (pSS). pSS is an underdiagnosed, long-term autoimmune disease that affects particularly salivary and lachrymal glands. Objectives: We assessed the usability of routinely recorded primary care and hospital claims data for the identification and validation of patients with complex diseases such as pSS. Methods: pSS patients were identified in primary care by translating the formal inclusion and exclusion criteria for pSS into a patient selection algorithm using data from Nivel Primary Care Database (PCD), covering 10% of the Dutch population between 2006 and 2017. As part of a validation exercise, the pSS patients found by the algorithm were compared to Diagnosis Related Groups (DRG) recorded in the national hospital insurance claims database (DIS) between 2013 and 2017. Results: International Classification of Primary Care (ICPC) coded general practitioner (GP) contacts combined with the mention of "Sjögren" in the disease episode titles, were found to best translate the formal classification criteria to a selection algorithm for pSS. A total of 1462 possible pSS patients were identified in primary care (mean prevalence 0.7‰, against 0.61‰ reported globally). The DIS contained 208 545 patients with a Sjögren related DRG or ICD10 code (prevalence 2017: 2.73‰). A total of 2 577 577 patients from Nivel PCD were linked to the DIS database. A total of 716 of the linked pSS patients (55.3%) were confirmed based on the DIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.