A field experiment was carried out in plant litter decomposition at three sites of the Balaton System (Balaton — Kis Balaton wetland — Zala Mouth) differing in their environment type during winter 2019/2020. The largest freshwater shallow lake in Central Europe (Carpathian Basin) is the Balaton, with a surface area of about 600 km2 and an average depth of 3.25 m. Right around the lake, a nutrient filtering system, the Kis-Balaton wetland, is functioning to avoid water deterioration and eutrophication. The aim of the study was to investigate crop-weather relations in two sample species, the widely distributed native P. australis and the allied S. canadensis incubated beneath the water using leaf-bag technique to characterise plant organ decomposition. Based on our results, the most consistent meteorological variable regarding decomposition process was global radiation (r = − 0.62* to − 0.91**; r: correlation coefficient; * and ** mean that correlations are significant at the 0.05 and 0.01 levels), in each treatment. In modelling the decomposition process, out of eight meteorological variables, only the daily mean air temperatures and humidity were excluded from regression equations. On dominatingly windy days, with the increase in water temperature of the Zala Mouth, the sensitivity of the decomposition of S. canadensis litter tended to decrease as compared to P. australis. The remaining litter masses were in a Kis-Balaton > Balaton > Zala order, contrasting the water temperature gradient that decreased from the Zala to the Kis-Balaton wetland under wind-dominated conditions. Considering all sampling places in three aquatic ecosystems, there was a 2.2 and a 2.7% daily mean detritus mass loss in P. australis and S. canadensis, respectively. We concluded that the invasive S. canadensis litter decomposed more quickly than those of native P. australis, irrespective to sampling site. Increase in winter water temperature significantly promoted the litter decomposition of both plant species. The originality of the study is that it quantifies the litter decomposition for an Eastern European wetland, during wintertime.
Increasing doses of farmyard manure (FYM) or equivalent mineral NPK fertilizers and their combinations were analysed in a crop rotation with potato, maize and winter wheat with special regard to their long-term influence on soil fertility. The yield-increasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK. Fairly high N release (50.9 kg ha −1 ) could be observed on the unfertilized plots. Great differences in N utilization were recorded, depending on the form and dose of fertilizers. The average N utilization from FYM was only 29.3%, while that of the equivalent fertilizer application was 49.8%. The lowest soil reactions were observed without fertilization and at the highest NPK doses. Negative N balances generally resulted in low soil organic matter content. FYM and equivalent NPK fertilizers had a similar influence on the ammonium lactate (AL)-extractable K 2 O content of the soil, while an increase in the AL-P 2 O 5 content could be observed in the case of mineral fertilization.
According to the data provision of the National Meteorological Service, since the early 1980’s an intense warming has begun and it is also reflected in domestic observations. In Hungary, just as in other Central European countries, the extremes of weather events are becoming more common. As a main crop, maize (sweet corn) has an outstanding national and global significance. Certainly, global warming and changes in water supply will harmfully affect the cultivability of maize too. Water stress reduces the leaf surface, therefore because of the less captured photosyntetically active radiation, biomass production and yields will be reduced. Weeds with a wider tolerance range than crops may also become increasingly dangerous competitors in field crop production because of their wide tolerance range, fertility and strong adaptability to changing climate- and precipitation conditions. In this research the effect of climate change on the evapotranspiration of maize was investigated at the Agrometeorological Research Station of MATE Georgikon Campus in Keszthely, between 21 May 2021 and 1 September 2021 in Thornthwaite-Mather type compensation evapotranspirometer. The aim of the study was to assess the main characteristics (like leaf area index, daily evapotranspiration, and yield) of sweetcorn under optimal water supply conditions. Furthermore it was also an aim to determine how weeding affects plant characteristics so half of the treatment (1 vessel of the evapotranspirometer) was kept weed-free, while the other half was exposed to natural weeding. In terms of results, positive relation between temperature and evapotranspiration was found and it has been established, that maximum temperature has a greater effect on evapotranspiration, than daily mean temperature. In case of yield indicators, the negative effect of weeding was statistically detectable and it was also pointed out, that the presence of weeds can negatively affect the quantity of crops. The results of the study was compared to a number of other researches on the subject, and it was concluded that the negative consequences of climate change, especially the increasing frequency of drought-hot periods could pose a major threat to successful maize production in the future.
Leaf litter decomposition is one of the main ecological material cycle processes in waterfront areas. In this microcosm experiment, the rate of decomposition of the most frequently occurring dominant waterside plants were examined in the summer months of 2022 in a class “A” evaporation pan, using litterbag technique. The study provides information about the decomposition dynamics of willow (Salix sp.), poplar (Populus sp.), reed (Phragmites australis) and different leaf litter mixture combinations. Dry mass, exponential decay coefficient and the chemical parameters of the water (pH, conductivity, NH4+, PO43-, SO42-) were determined during the 84 days long experimental period. The weight loss curves showed negative exponential pattern in every case. On average, the different samples lost ~ 57% of their initial dry mass during the experimental period. The largest mass loss was measured in case of poplar (67.2%), while reed leaves had the smallest mass loss (47.25%). Based on the results, it cannot be proven, that mixed leaf litter accelerates the rate of decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.