Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17β-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly ( p.adj . < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript ( Htr4 ) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients ( n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B , CACNA1G , FNDC3A ). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary–brain communication and informs genetic research on human fertility disorders.
Human reproduction is controlled by ~2,000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here we report the discovery and characterization of additional ~150,000-200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of GNRH1 and GNRHR1 autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson's and Alzheimer's diseases, need to be explored.
Kisspeptin neurons residing in the rostral periventricular area of the third ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and negative estrogen feedback, respectively. Here, we aim to compare transcriptional responses of KPRP3V and KPARC neurons to estrogen. Transgenic mice were ovariectomized and supplemented with either 17β-estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by laser-capture microdissection were subjected to RNA-seq. Bioinformatics identified 222 E2-dependent genes. Four genes encoding neuropeptide precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was subsignificantly upregulated, suggesting putative contribution of multiple neuropeptides to estrogen feedback mechanisms. Using overrepresentation analysis, the most affected KEGG pathways were neuroactive ligand-receptor interaction and dopaminergic synapse. Next, we re-analyzed our previously obtained KPARC neuron RNA-seq data from the same animals using identical bioinformatic criteria. The identified 1583 E2-induced changes included suppression of many neuropeptide precursors, granins, protein processing enzymes, and other genes related to the secretory pathway. In addition to distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two common changes in genes encoding three hormone receptors (Ghsr, Pgr, Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a) were also identified. The strikingly different transcriptional responses in the two neuron populations prompted us to explore the transcriptional mechanism further. We identified ten E2-dependent transcription factors in KPRP3V and seventy in KPARC neurons. While none of the ten transcription factors interacted with estrogen receptor-α, eight of the seventy did. We propose that an intricate, multi-layered transcriptional mechanism exists in KPARC neurons and a less complex one in KPRP3V neurons. These results shed new light on the complexity of estrogen-dependent regulatory mechanisms acting in the two functionally distinct kisspeptin neuron populations and implicate additional neuropeptides and mechanisms in estrogen feedback.
In an attempt to model occupational and environmental Mn exposures and their possible interaction, young male Wistar rats were exposed to Mn by oral administration in dissolved form (MnCl2 ·4H2O, 14.84 and 59.36 mg/kg b.w.) and by intratracheal application of MnO2 nanoparticles (2.63 mg/kg b.w.). After 3 and 6 weeks oral, or 3 weeks oral plus 3 weeks intratracheal, exposure, general toxicological, and electrophysiological tests were done. Body weight gain was significantly reduced after 6 and 3 plus 3 weeks exposure, but the effect of the latter on the pace of weight gain was stronger. Organ weights signalized systemic stress and effect on lungs. Changes in evoked electrophysiological responses (cortical sensory evoked potential and nerve action potential) indicated that the 3 plus 3 weeks combined exposure caused equal or higher changes in the latency of these responses than 6 weeks of exposure, although the calculated summed Mn dose in the former case was lower. The results showed the importance of the physicochemical form of Mn in determining the toxic outcome, and suggested that neurofunctional markers of Mn action may indicate the human health effect better than conventional blood Mn measurement.
Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.