Self-driving vehicles are a maturing technology with the potential to reshape mobility by enhancing the safety, accessibility, efficiency, and convenience of automotive transportation. Safety-critical tasks that must be executed by a self-driving vehicle include planning of motions through a dynamic environment shared with other vehicles and pedestrians, and their robust executions via feedback control. The objective of this paper is to survey the current state of the art on planning and control algorithms with particular regard to the urban setting. A selection of proposed techniques is reviewed along with a discussion of their effectiveness. The surveyed approaches differ in the vehicle mobility model used, in assumptions on the structure of the environment, and in computational requirements. The side-by-side comparison presented in this survey helps to gain insight into the strengths and limitations of the reviewed approaches and assists with system level design choices.
VIConclusions 23 References 23 * The first two authors contributed equally to this work.
In this paper, we present a unified optimal and exponentially stable filter for linear discrete-time stochastic systems that simultaneously estimates the states and unknown inputs in an unbiased minimum-variance sense, without making any assumptions on the direct feedthrough matrix. We also provide the connection between the stability of the estimator and a system property known as strong detectability, and discuss the global optimality of the proposed filter. Finally, an illustrative example is given to demonstrate the performance of the unified unbiased minimum-variance filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.