BackgroundReal-time PCR is an efficient tool to measure transcripts and provide valuable quantitative information on gene expression of preimplantation stage embryos. Finding valid reference genes for normalization is essential to interpret the real-time PCR results accurately, and understand the biological dynamics during early development. The use of reference genes also known as housekeeping genes is the most widely applied approach. However, the different genes are not systematically compared, and as a result there is no uniformity between studies in selecting the reference gene. The goals of this study were to compare a wide selection of the most commonly used housekeeping genes in mouse oocytes and preimplantation stage embryos produced under different culture conditions, and select the best stable genes for normalization of gene expression data.ResultsQuantitative real time PCR method was used to evaluate 12 commonly used housekeeping genes (Actb, Gapdh, H2afz, Hprt, Ppia, Ubc, Eef1e1, Tubb4, Hist2h2aa1, Tbp, Bmp7, Polr2a) in multiple individual embryos representing six different developmental stages. The results were analysed, and stable genes were selected using the geNorm software. The expression pattern was almost similar despite differences in the culture system; however, the transcript levels were affected by culture conditions. The genes have showed various stabilities, and have been ranked accordingly.ConclusionCompared to earlier studies with similar objectives, we used a unique approach in analysing larger number of genes, comparing embryo samples derived in vivo or in vitro, analysing the expression in the early and late maternal to zygote transition periods separately, and using multiple individual embryos. Based on detailed quantification, pattern analyses and using the geNorm application, we found Ppia, H2afz and Hprt1 genes to be the most stable across the different stages and culture conditions, while Actb, the classical housekeeping gene, showed the least stability. We recommend the use of the geometric averages of those three genes for normalization in mouse preimplantation-stage gene expression studies.
The aim of this study was to investigate the effect of the swim up and Percoll methods to select frozen-thawed bull spermatozoa with high quality membrane and acrosomal integrity and final concentration. Semen samples from six Holstein-Friesian bulls were examined. The whole experiment was repeated three times. Before and after both treatments, spermatozoa were subjected to a double-staining method and evaluated by brightfield light microscope using 40x dry, or 100x oil immersion objectives. The concentration of spermatozoa evaluated by haemocytometer was 8.8 x 10(7)/ml after thawing, and the percentage of live cells with intact acrosome was 45.8%. Both treatments significantly increased the proportion of live spermatozoa compared with no treatment, and the use of Percoll gradient resulted in a significantly higher percentage of living cells with an intact acrosome (88.2%) than the swim up method (69.4%). The concentration of spermatozoa after Percoll separation (9.3 x 10(6)/ml) was higher than that after the swim up method (5.8 x 10(6)/ml). These results indicate that spermatozoa with a higher viability and acrosome integrity can be obtained by Percoll separation than by the swim up method. Therefore the use of Percoll-treated spermatozoa in IVF systems can be more expedient.
The analysis of differences in gene expression, responding to cryopreservation may explain some of the observed differences in further development of the preimplantation stage embryos. The aim of this study was to create a link, for the first time, between morphological/developmental observations and gene activity changes following cryopreservation of embryos. Efficiency of two vitrification methods, solid surface and in-straw vitrifications for pronuclear-stage mouse zygotes and 8-cell stage mouse embryos was compared based on morphological survival, blastocyst formation, and changes in embryonic gene expression. Both stages of embryos were vitrified by SSV using 35% ethylene glycol (EG) for vitrification solution (VS) and in-straw vitrification using 40% EG for VS. No significant differences were found between immediate survival rates of embryos vitrified by SSV and in-straw vitrification in both stages. Blastocyst rates were significantly higher with SSV and not significantly different from that of control. These results showed that SSV was more efficient than in-straw vitrification. Treatment with cytochalasin-b did not improve cryosurvival during SSV. The quantification of selected gene transcripts from single embryo (6 embryos/treatment group) were carried out by quantitative real-time RT-PCR. It was performed by adding 1/8 of each embryo cDNA to the PCR mix containing the specific primers to amplify housekeeping gene (beta-actin), heat shock protein gene (Hsp70), genes related to oxidative stress (MnSOD and CuSOD), cold stress (CirpB, Rbm3), and cell-cycle arrest (Trp53). We found upregulation of all six stress-related genes at 3 hr post-warming in pronuclear stage embryos. Expression of these genes showed much higher level (2-33-fold) in in-straw vitrification than in in vitro control embryos. In SSV-treated embryos we could detect only slight changes (0.3-2-fold). At 10 hr post-warming, all genes were downregulated in embryos vitrified by in-straw method. In SSV-treated group expression of Hsp70 showed slight increase and Trp53 showed decrease. In contrast to pronuclear stage, there was no clear pattern of gene expression changes after vitrification in 8-cell stage embryos. Several genes were upregulated both at 3 and 10 hr post-warming. Moreover, we found upregulation of beta-actin gene which we expected to use as a reference gene in in-straw treated embryos in both 3 and 10 hr post-warming, while in pronuclear stage embryos and in SSV treatment there was no effect on beta-actin expression level. There was no difference in gene expression between blastocysts developed from fresh or vitrified embryos. In conclusion, the real-time RT-PCR method from single embryo opened new opportunities for the understranding of molecular events following cryopreservation. The upregulation of stress-related genes at 3 hr post-warming in pronuclear stage embryos might have been an early indicator of reduced viability following in-straw vitrification in good correlation with the developmental data to blastocyst stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.