We study the techno-economics of submarine systems constrained by a fixed electrical power supply. We show significant cost savings for high-capacity submarine systems using massive space-division multiplexing (SDM), even without assuming any savings from SDM-specific subsystem integration. Systems with about 100 parallel optical paths, e.g., ∼50 fiber pairs are shown to provide minimum cost/bit, operating at reduced spectral efficiencies and deep within the linear regime. While advanced nonlinearity-optimized fibers and digital nonlinearity compensation schemes provide little to no gain in such systems, SDM integration of amplifiers and transponders is shown to be a source for significant additional cost savings. We further examine the permissible cost premium for multicore fibers in such massively parallel systems and revisit various design tradeoffs for optical amplifiers, showing that a reduced noise figure can be traded for better power conversion efficiency. We also evaluate potential gains from increasing the available electrical supply power and discuss reliability aspects of massively parallel submarine systems.
In the last years, the migration from 10 to 40/100 Gbps networks has been proposed as a solution to increase the capacity of transparent optical networks. Initially, the replacement of 10 Gbps legacy equipment was considered. Nowadays, some works point out that the deployment of mixed line rate (MLR) networks, where 10 Gbps and higher bit rate Gbps channels share the same fiber, could be more cost effective than the total replacement of 10 Gbps systems. In this paper, we investigate the planning of 10/40 Gbps MLR networks using the ITU 50 GHz grid, considering nonlinear interferences between 10 and 40 Gbps channels, which degrade the quality of transmission. This approach is novel in the literature. In addition, we conduct a set of tests normalizing the length of fiber links, to observe the trends in MLR planning for different network sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.