The paper aims to propose a method of reconfiguring the train timetable, taking into account minimising the globally consumed energy for traction purposes. This is a very important issue in the context of rising electricity prices, alarming climate changes and the “Fit for 55” policy introduced in Europe. Each unit of energy saved contributes to improving the state of the planet and reducing the negative human impact on it. In this paper, the authors propose a model that, when applied, will reconfigure the timetable in terms of energy intensity and, as a result, reduce the impact of railways on the burden on the environment. It is proposed to introduce an interdependence between trajectories of electrical train movement. This interdependence is to take place so that it is possible to efficiently transfer the energy recovered during the braking of one train to another train, moving on the same section of the railway line and at the same time (i.e., without using energy storage devices). The paper provides a physical background to the considerations—discussing the movement of electric trains in the context of their energy intensity and the possibility of energy recovery; presenting the possibility of interconnecting trains in such a way that the energy from a train that is being braked can be efficiently used by a train that is being accelerated; presenting a method for making the linkages between trains (in the form of an original algorithm resulting from the application of the Delphi method) and implementing them in the timetable. The timetable for the application of the method is real and was obtained from the railway operator in Poland, as a mathematical–physical model describing the trajectory and energy consumption of the original, after which the proposed timetable was verified by running simulations and comparing the energy consumption of the original and the proposed timetable. It turned out that it is possible to achieve a global total energy demand reduction of up to 398 MWh/year. This proves the validity of using the proposed algorithm at the timetabling stage and extending its implementation to the entire network. Furthermore the authors also recognise the tendency of the algorithm to return repeatable solutions, which has the side effect of creating a cyclic timetable. Its implementation in Poland has proved impossible for many years. The application of the proposed method could change this unfavourable situation.
The main aim of this study was to develop a method for assessing the level of robustness of timetabled transport performance in rail transport. When the railway lines are supplied by DC networks, lower voltages are observed, and consequently, current values are often ten times higher than in AC networks. This is an operational problem, as high currents make it easier to overload the supply network. Based on a literature review, the authors show that the problem of running railway traffic when the capacity of the power supply network is limited (by the size of the permitted currents) is not well studied. The authors propose a method based on the Markov approach supplemented by classical theoretical vehicle traffic dynamics to improve the operational robustness of the rail transport system using DC power supply system. Each train run was parameterised in such a way that it is possible to determine the state that the train is in during the run, the transitions between states, and the determination of the probabilities of occurrence of such states. On the other hand, classical vehicle dynamics was used to assess the load generated by the train on the power grid. The proposed method—reduced to a function—was verified using a case study. The method of timetable reconfiguration proposed by the authors increased the operational robustness from 0.9454 to 0.9774.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.