We used the patch-clamp technique to identify and characterize the electrophysiological, biophysical, and pharmacological properties of K(+) channels in enzymatically dissociated ventricular cells of the land pulmonate snail Helix. The family of outward K(+) currents started to activate at -30 mV and the activation was faster at more depolarized potentials (time constants: at 0 mV 17.4 +/- 1.2 ms vs. 2.5 +/- 0.1 ms at + 60 mV). The current waveforms were similar to those of the A-type family of voltage-dependent K(+) currents encoded by Kv4.2 in mammals. Inactivation of the current was relatively fast, i.e., 50.2 +/- 1.8% of current was inactivated within 250 ms at + 40 mV. The recovery of K(+) channels from inactivation was relatively slow with a mean time constant of 1.7 +/- 0.2 s. Closer examination of steady-state inactivation kinetics revealed that the voltage dependency of inactivation was U-shaped, exhibiting less inactivation at more depolarized membrane potentials. On the basis of this phenomenon, we suggest that a channel encoded by Kv2.1 similar to that in mammals does exist in land pulmonates of the Helix genus. Outward currents were sensitive to 4-aminopyridine and tetraethylammonium chloride. The last compound was most effective, with an IC(50) of 336 +/- 142 micro mol l(-1). Thus, using distinct pharmacological and biophysical tools we identified different types of voltage-gated K(+) channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.