We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57 EeV in the northern sky using data collected over a 5 yr period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20 • radius circles. The hotspot has a Li-Ma statistical significance of 5.1σ , and is centered at R.A. = 146. • 7, decl. = 43. • 2. The position of the hotspot is about 19 • off of the supergalactic plane. The probability of a cluster of events of 5.1σ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7 × 10 −4 (3.4σ).
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 × 10 18 eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 × 10 18 eV and a steepening at 5.4 × 10 19 eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
The Telescope Array (TA) experiment, located in the western desert of
Utah,USA, is designed for observation of extensive air showers from extremely
high energy cosmic rays. The experiment has a surface detector array surrounded
by three fluorescence detectors to enable simultaneous detection of shower
particles at ground level and fluorescence photons along the shower track. The
TA surface detectors and fluorescence detectors started full hybrid observation
in March, 2008. In this article we describe the design and technical features
of the TA surface detector.Comment: 32 pages, 17 figure
We present results of two-and three-dimensional Particle-In-Cell simulations of magnetic-turbulence production by isotropic cosmic-ray ions drifting upstream of supernova remnant shocks. The studies aim at testing recent predictions of a strong amplification of short-wavelength magnetic field and at studying the subsequent evolution of the magnetic turbulence and its backreaction on cosmic ray trajectories. We observe that an oblique filamentary mode grows more rapidly than the non-resonant parallel modes found in analytical theory, and the growth rate of the field perturbations is much slower than is estimated for the parallel plane-wave mode, possibly because in our simulations we cannot maintain ω ≪ Ω i , the ion gyrofrequency, to the degree required for the plane-wave mode to emerge. The evolved oblique filamentary mode was also observed in MHD simulations to dominate in the non-linear phase, when the structures are already isotropic. We thus confirm the generation of the turbulent magnetic field due to the drift of cosmic-ray ions in the upstream plasma, but as our main result find that the amplitude of the turbulence saturates at about δB/B ∼ 1. The backreaction of the magnetic turbulence on the particles leads to an alignment of the bulk-flow velocities of the cosmic rays and the background medium. This is an essential characteristic of cosmic-ray modified shocks: the upstream flow speed is continuously changed by the cosmic rays. The deceleration of the cosmic-ray drift
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.