Background:Cervical pedicle screw fixation is challenging due to the small osseous morphometrics and the close proximity of neurovascular elements. Computer navigation has been reported to improve the accuracy of pedicle screw placement. There are very few studies assessing its efficacy in the presence of deformity. Also cervical pedicle screw insertion in children has not been described before. We evaluated the safety and accuracy of Iso-C 3D-navigated pedicle screws in the deformed cervical spine.Materials and Methods:Thirty-three patients including 15 children formed the study group. One hundred and forty-five cervical pedicle screws were inserted using Iso-C 3D-based computer navigation in patients undergoing cervical spine stabilization for craniovertebral junction anomalies, cervico-thoracic deformities and cervical instabilities due to trauma, post-surgery and degenerative disorders. The accuracy and containment of screw placement was assessed from postoperative computerized tomography scans.Results:One hundred and thirty (89.7%) screws were well contained inside the pedicles. Nine (6.1%) Type A and six (4.2%) Type B pedicle breaches were observed. In 136 levels, the screws were inserted in the classical description of pedicle screw application and in nine deformed vertebra, the screws were inserted in a non-classical fashion, taking purchase of the best bone stock. None of them had a critical breach. No patient had any neurovascular complications.Conclusion:Iso-C navigation improves the safety and accuracy of pedicle screw insertion and is not only successful in achieving secure pedicle fixation but also in identifying the best available bone stock for three-column bone fixation in altered anatomy. The advantages conferred by cervical pedicle screws can be extended to the pediatric population also.
Background and Aims:Dynamic parameters such as the respiratory variation in aortic flow peak velocity (ΔVpeak) and inferior vena cava distensibility index (dIVC) are accurate indices of fluid responsiveness in adults. Little is known about their utility in children. We studied the ability of these indices to predict fluid responsiveness in anaesthetised and mechanically ventilated children.Methods:This prospective study was conducted in 42 children aged between one to 14 years scheduled for elective surgery under general endotracheal anaesthesia. Mechanical ventilation was initiated with a tidal volume of 10 ml/kg. ΔVpeak, dIVC and stroke volume index (SVI) were measured before and after volume expansion (VE) with 10 ml/kg of crystalloid using transthoracic echocardiography. Patients were considered to be responders (R) and non-responders (NR) when SVI increased to either ≥15% or <15% after VE. ΔVpeak and dIVC were analysed between R and NR.Results:The best cut-off value for ΔVpeak as defined by the receiver operator characteristics (ROC) curve analysis was 12.2%, for which sensitivity, specificity, positive predictive value and negative predictive value were 100%, 94%, 96% and 100%, respectively, the area under the curve was 0.975. The best cut-off value for dIVC as defined by the ROC curve analysis was 23.5%, for which sensitivity, specificity, positive predictive value and negative predictive value were 91%, 89%, 91% and 89%, respectively, the area under the curve was 0.95.Conclusion:ΔVpeak and dIVC are reliable indices of fluid responsiveness in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.