We derive new functional equations at a species level for certain classes of 2-trees, including a dissymmetry theorem. From these equations we deduce various series expansions for these structures. We obtain formulas for unlabeled 2-trees which are more explicit than previously known results. Moreover, the asymptotic behavior of unlabeled 2-trees is established. 2002 Elsevier Science (USA) Nous présentons de nouvelleséquations fonctionnelles pour certaines classes de 2-arbres, incluant un théorème de dissymétrie. Nous en déduisons diverses séries génératrices associéesà ces espèces. Nous obtenons ainsi des formulesénumératives pour les 2-arbres non-étiquetés qui sont plus explicites que les résultats connus jusquà présent. De plus le comportement asymptotique de ces structures estétabli.
Thrs report mas prepared as an account of wwk sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or the* emptovees. makes any warranty, expnBs or implied, or wwimii any lefal liability or responsibility lor me accuracy, completeness or usefulness of any information, apparatus, product or process etadoMd. or represents that its us* would not infringe prrtajtety owned rifhts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.