In this study the effects of low temperature plasma nitriding on the characteristics of different austenitic stainless steels, CrNi-based (AISI 304L and AISI 316L) and CrMn-based (AISI 202), were compared. Samples were nitrided at 400 and 430 C, at 1000 Pa for 5 h, and their microstructure, phase composition, microhardness and corrosion resistance were evaluated. The characteristics of modified surface layers depended on both treatment parameters and alloy composition. For all the steels modified surface layers had a double layer microstructure. In the outer modified layer, mainly consisting of S phase, deformation (or shear) bands were observed in the grains, and nitrogen induced h.c.p. martensite, ε 0 N , formed. The tendency to form shear bands and ε 0 N was higher for AISI 202 samples, and decreased for AISI 304L and then for AISI 316L ones, influencing the modified layer thickness. When nitriding was performed at 430 C, nitrides formed, and their amount was affected by steel composition. Nitriding treatments allowed to markedly increase surface microhardness and corrosion resistance, in comparison with the untreated alloys. When nitrides did not form, as for the 400-C nitrided samples, the corrosion behaviour of the considered steels was comparable. Nitride precipitation affected corrosion resistance, increasing corrosion phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.