In nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. Although the best estimate codes can simulate the transients and provide realistic system responses, the use of nonexact models, together with assumptions and estimations, is a source of uncertainties which must be properly evaluated. This paper describes a Rod Ejection Accident (REA) simulated using the coupled code RELAP5/PARCSv2.7 with a perturbation on the cross-sectional sets in order to determine the uncertainties in the macroscopic neutronic information. The procedure to perform the uncertainty and sensitivity (U&S) analysis is a sampling-based method which is easy to implement and allows different procedures for the sensitivity analyses despite its high computational time. DAKOTA-Jaguar software package is the selected toolkit for the U&S analysis presented in this paper. The size of the sampling is determined by applying the Wilks’ formula for double tolerance limits with a 95% of uncertainty and with 95% of statistical confidence for the output variables. Each sample has a corresponding set of perturbations that will modify the cross-sectional sets used by PARCS. Finally, the intervals of tolerance of the output variables will be obtained by the use of nonparametric statistical methods.
In a nuclear reactor, even operating at full power and steady-state conditions, fluctuations are detected in the recording of any process parameter. These fluctuations (also called noise) could be of various origins, such as, turbulence, mechanical vibrations, coolant boiling, etc. The monitoring and complete comprehension of those parameters should thus allow detecting, using existing instrumentation and without introducing any external perturbation to the system, possible anomalies before they have any inadvertent effect on plant safety and availability. In order to reproduce and study the induced neutron noise in a nuclear reactor core, it is compulsory to develop suitable tools. Existing time-domain codes were originally not developed for this type of calculations. Modifications of those codes and the development of an associated intricate methodology are necessary for enabling noise calculations. This involves, in some cases, changes in the source code and the development of new auxiliary tools to ensure accurate reproductions of the core behavior under the existence of a neutron noise source. In the proposed work, the time-domain neutron diffusion code PARCS is used to model the effect of stationary perturbations representative of given neutron noise sources. In order to validate the feasibility of the time-dependent methodology thus developed, comparisons with the results of simulations performed in the frequency domain, using the CORE SIM tool, developed at Chalmers University of Technology, are performed. The development of a few test cases based on a real reactor model are undertaken as the basis for such comparisons and a methodology aimed at assessing the time-domain simulations versus the frequency-domain simulations is established. It is demonstrated that PARCS, although not primarily developed for neutron noise calculations, can reproduce neutron noise patterns for reasonable frequencies. However, it is also observed that unphysical results are occasionally obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.