Ba0.7Sr0.3TiO3 (BST) single and quadruple layer capacitors with Pt electrodes were fabricated together on polycrystalline alumina substrates with a SiO2-based multicomponent amorphous buffer layer (SiO2/Al2O3). This paper presents the results of the characterization of these capacitors, to demonstrate their suitability for application as decoupling (high value) capacitors and as components in tunable RF applications (e.g., phase shifters and filters). BST films of different compositions, (Ba0.7Sr0.3)TiO3 and (Ba0.5Sr0.5)TiO3, were grown by metal-organic decomposition (MOD) and RF magnetron reactive sputtering. The capacitance density of 90–140 nm thick BST films was in the range of 20 to 70 fF/μm 2. Parallel plate capacitors with areas from 16 μm2 to 2.25 mm2 were fabricated using photolithography and ion milling techniques. For large capacitors (0.125 to 2.25 mm2), capacitance and tanδ were measured at low frequencies (1 KHz - 1 MHz) using an LCR meter. Smaller capacitors (16 μm2 to 3600 μm2) were additionally characterized in the frequency range of 50 MHz - 20 GHz. In such case, capacitance, tanδ and equivalent series resistance (ESR) were extracted from two port scattering parameters obtained using a vector network analyzer (VNA). The relationship between dielectric loss, tunability and calculated figure of merit vs. BST composition and deposition temperature was outlined. In addition, loss and ESR at high frequencies was investigated. The typical achieved leakage current density of sputtered BST films for 2.25 mm2 capacitors fabricated on SiO2/Al2O3 was 7.3×10-9 A/cm2 at 300 kV/cm (65 fF/μm2), about 2 times lower than for (Ba0.7Sr0.3)TiO3 films deposited by MOD (1.4×10-8 A/cm2 at 300 kV/cm, 34.5 fF/μm2). Furthermore, the tunability of (Ba0.7Sr0.3)TiO3 deposited by both methods on SiO2/Al2O3 was ∼60% at 350 kV/cm.
Double layer (DL) Ba0.7Sr0.3TiO3 (BST) capacitors with Pt electrodes have been fabricated with similar growth conditions on different substrates. The substrates used in the present study were r-plane sapphire, polycrystalline alumina Al2O3 (99.6% and 96%), and glazed polycrystalline alumina. BST films were grown by metal-organic decomposition (MOD) method. By varying the annealing conditions which affects the formation of the crystalline structure, significant changes in the dielectric properties of the BST films have been observed. BST films were characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Powder X-ray Diffractometer (PXRD). These observations showed that BST films grown at lower temperatures on alumina substrates exhibited the smallest grain size. BST films of the same thickness prepared under the same thermal processing conditions showed higher capacitance when grown on all types of alumina-based substrates compared to those deposited on control SiO2/Si. The higher capacitance on alumina was always associated with larger dissipation factor, and lower or similar leakage current density. The final tuning, of the dielectric properties of BST DL capacitors on non-silicon substrates, was correlated to the initial film formation temperature and post-annealing conditions of the BST films. The leakage current density, of DL BST capacitors fabricated on glazed alumina, becomes smallest when the BST processing temperature was lowered by 100 °C compared to the control SiO2/Si. The typical achieved leakage current density for 1500×1500 μm2 DL capacitors on glazed alumina was 3.8×10-9 A/cm2 at 250 kV/cm (36.5 fF/μm2), about 3 times lower than on SiO2/Si substrates (1.1×10-8 A/cm2 at 250 kV/cm, 31 fF/μm2).
In this paper we present the results of the characterization of parallel-plate thin-film (Ba1-x ,Sr x )TiO3 (BST) capacitors, to demonstrate their suitability for use as decoupling capacitors (a capacitance as high as 0.34 µF and a capacitance density of up to 70 fF/µm2) and as tunable RF components (a small capacitance from 0.5 pF to 16 pF, a high tunability of 4.22:1 at 10 V and a capacitance density of up to 34 fF/µm2). BST films of different compositions, (Ba0.7Sr0.3)TiO3 and (Ba0.5Sr0.5)TiO3, were grown by metal-organic decomposition (MOD) and RF magnetron reactive sputtering on Pt/TiO x /SiO2/Al2O3 ceramic substrates. For large capacitors (2.25 mm2), capacitance and tan δ were measured at low frequencies (1 kHz) using an LCR meter. Smaller capacitors (16 µm2 to 961 µm2) were characterized in the frequency range of 0.01–20 GHz. Capacitance, tan δ and equivalent series resistance (ESR) were extracted from two port scattering parameters obtained using a vector network analyzer (VNA). The relationships between dielectric loss, tunability and commutation quality factor (CQF) vs BST composition and deposition conditions were outlined.
The power handling capability of tunable microwave devices employing planar and parallel-plate BaxSr1-xTiO3 film-based capacitors was experimentally measured and analyzed. A microstrip resonator, excited by either harmonic or two-tone microwave signals of elevated power, was selected as an example of tunable test fixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.