We deposited epitaxial Ba0.4Sr0.6TiO3 (BST) films via laser ablation on MgO and LaAlO3 (LAO) substrates for tunable microwave devices. Postdeposition anneals (∼1100 °C in O2) improved the morphology and overall dielectric properties of films on both substrates, but shifted the temperature of maximum dielectric constant (Tmax) up for BST/LAO and down for BST/MgO. These substrate-dependent Tmax shifts had opposite effects on the room-temperature dielectric properties. Overall, BST films on MgO had the larger maximum dielectric constant (ε/ε0⩾6000) and tunability (Δε/ε⩾65%), but these maxima occurred at 227 K. 30 GHz phase shifters made from similar films had figures of merit (ratio of maximum phase shift to insertion loss) of ∼45°/dB and phase shifts of ∼400° under 500 V (∼13 V/μm) bias, illustrating their utility for many frequency-agile microwave devices.
The nonlinear response of ferroelectric BaxSr1−xTiO3 films to microwave electric field intensity up to ∼3×106 V/m was studied. Two techniques were used for this investigation: (i) 10 GHz pulsed power measurements, and (ii) 4 GHz intermodulation distortion (IMD) measurements. The nonlinear distortion of the resonant curve under microwave pulsed power and generation of the third-order IMD products in microwave resonators using ferroelectric film planar capacitors were measured. The use of microwave pulses and continuous signals enabled the separation of the nonlinear dielectric response from the heating response of the ferroelectric films and the microwave nonlinear parameters of the ferroelectric films to be determined. It is shown that up to a specified value of microwave voltage amplitude the nonlinear response of BaxSr1−xTiO3 film capacitors can be predicted from the small signal capacitance–voltage characteristics. Formulas to estimate power handling capability connected with the field dielectric nonlinearity and the film overheating are derived for the tunable microwave devices based on ferroelectric films.
The voltage-dependent dielectric constant (ε) of SrTiO3 (STO) thin films is the basis for developing cryogenic capacitors for tunable microwave applications. In this study, the effect of microwave signal level on nonlinear response at 1.7–1.9 GHz was examined by measuring the level of the third order intermodulation distortion (IMD) signal relative to the input signal level. Small signal dielectric properties such as capacitance, tuning, and loss (tan δ) were also measured at 1 MHz, 3 GHz, and 10 GHz, at temperatures from 4.2 to 300 K. Planar capacitors were comprised of highly (100)-oriented, 1 μm thick STO films deposited via magnetron sputtering onto CeO2-buffered (11_02)-oriented sapphire substrates, with 10 μm gaps between the electrodes. Deviations from the anticipated cubic dependence of the third order IMD product on incident power, for incident power ranges from −10 to 22 dBm, were attributed to conductivity nonlinearity. At incident power levels of 22 dBm and with no dc bias applied to the capacitor, the level of the third order IMD product was 21 dB below the fundamental signal level. Application of a 107 V/m dc electric field bias across the capacitor suppressed the third order IMD by an additional 10 dB. The nonlinear properties of thin film STO capacitors as a function of microwave voltage were determined by comparing the experimental and theoretical dependencies of the IMD products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.