To use bacteriophages (phages) to control food-borne pathogenic bacteria, it will be necessary to determine the conditions allowing optimal activity. To start exploring these conditions, a Salmonella phage (P7) and a Campylobacter phage (Cj6) were incubated with their respective hosts at 24 degrees C for up to 2 h at varying phage and host cell concentrations, and surviving host cells were enumerated. A quadratic polynomial equation was fitted to the inactivation data and contour maps of inactivation against log(10) phage and host concentrations were plotted. Inactivation of Salmonella by P7 seemed to be independent of the host concentration, with close to 100% inactivation occurring at a phage concentration of around 5 x 10(8) PFU mL(-1). For Campylobacter phage Cj6, there appeared to be an interaction of both phage and host concentrations. The data obtained were largely consistent with prior work indicating that, at low host cell concentrations, the proportion of cells killed is independent of the host cell concentration. The data indicate that biocontrol of pathogens present in low numbers in liquid foods is achievable, given a sufficiently high concentration of added phages, and that it is not necessary to know the concentration of pathogens to achieve this.
The efficacy of a peroxyacetic acid formulation (POAA) at reducing Escherichia coli O157:H7 contamination on external carcass surfaces of hot-boned beef and veal with a commercial spray apparatus was determined. Hot-boned external carcass surfaces were inoculated with either a high dose (10(6) CFU/cm2) in fresh bovine feces or with a low dose (10(3) CFU/cm2) in diluent of laboratory-cultured E. coli O157:H7. Treatments included a water wash, a POAA (180 ppm) wash, or a water plus POAA wash. Samples were extracted from the external carcass surface with a cork borer to determine the numbers of viable E. coli O157:H7 remaining on the carcass surface after treatment. Although a water wash alone resulted in a 1.25 (94.4%) and a 1.31 (95.1%) mean log reduction on veal and beef inoculated with a high dose of E. coli O157:H7, the POAA treatment resulted in a substantially greater mean log reduction of 3.56 and 3.59 (>99.9%). The water wash only resulted in a 33.9% reduction on veal and 62.8% on beef inoculated with a low dose of E. coli O157:H7, whereas POAA treatment greatly improved pathogen reduction to 98.9 and 97.4% on veal and beef, respectively. The combination of a water wash followed by a POAA treatment resulted in a similar E. coli O157:H7 reduction to that achieved by POAA treatment alone. In conclusion, POAA treatment significantly reduced viable E. coli O157:H7 numbers on experimentally contaminated beef and veal carcasses, which justifies its use as a chemical intervention for the removal of this human pathogen.
The use of replication-deficient UV-treated bacteriophages, or phages, presents an alternative to viable phages for food biocontrol applications. Nontransducing UV-treated phages, if used correctly, are unlikely to produce viable progeny phages, which might otherwise mediate undesirable horizontal gene transfer events. Phage T4 and Escherichia coli were used as a model system to examine this possibility. UV-treated phages were able to cause a reduction in the optical density of outer membrane-free cell suspensions and they also killed host cells under conditions not permitting their multiplication, that is, 24 degrees C for 2 h and 37 degrees C for 15 min. Host cell reductions were also demonstrated in broth and on meat at 5 degrees C when high concentrations of phages of 2.3 x 10(9) PFU mL(-1) and 1.8 x 10(8) PFU cm(-2), respectively, were used. At 24 degrees C and 37 degrees C, "lysis from without" was likely to be the mechanism responsible for the reduction in host cell concentrations, but at 5 degrees C this may not have been the case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.