Molecular oxygen (O2) in unsaturated geologic sediments plays an important role in soil respiration, biodegradation of organic contaminants, metal oxidation, and global oxygen and carbon cycling, yet little is known about oxygen isotope fractionation during the consumption and transport of O2 in unsaturated zones. We used a laboratory kinetic cell technique to quantify isotope fractionation due to respiration and a numerical model to quantify both consumptive and diffusive fractionation of O2 isotopes at a field site comprised of unsaturated lacustrine sandy materials. The combined use of laboratory-based kinetic cell experiments and field-based isotope transport modeling provided an effective tool to characterize microbial respiration in unsaturated media. Based on results from the closed-system kinetic cells, O2 consumption and isotope fractionation were attributed to the alternative cyanide-resistant respiration pathway. At the field site, the modeled depth profiles for O2 and delta18O matched the measured in situ data and confirmed that the consumption of O2 was via the alternative respiration pathway. If the cyanide-resistant respiration pathway is indeed widespread in soils, its high oxygen isotope enrichment factor could help to explain the discrepancy between the predicted present-day Dole effect (+20.8/1000) and the observed Dole effect (+23.5/1000). Thus, further soil O2 isotope studies are needed to better characterize and model the fractionation of oxygen isotopes during subsurface respiration and the potential impact on the isotopic content of atmospheric O2.
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.
In situ determinations of geochemical reaction rates in mine waste-rock piles remain a challenge. Depth-profiles of field O2 and CO2 pore-gas concentrations, delta13C(CO2) values, and moisture contents were used to characterize and quantify geochemical reaction rates in two waste-rock piles at the Key Lake Uranium Mine in northern Saskatchewan, Canada. Traditionally, the presence of O2 concentrations less than atmospheric in waste-rock piles has been attributed to mineral oxidation. This study showed that the interpretation of O2 and CO2 concentration profiles alone could not be used to identify the depths of dominant geochemical reactions in the piles and could lead to erroneous estimates of reaction rates. Modeling of the delta13C(CO2) depth profiles clearly showed that the gas concentration profiles present in the piles were the result of the oxidation of organic matter present below the piles, a mechanism not previously reported in the literature. Based on these findings, the rates of reactions in the organic zone were determined. The oxidation of organic matter at the base of waste-rock piles should be considered in future mine-waste pore-gas studies, in addition to sulfide oxidation and carbonate buffering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.