Tension responses due to small and rapid length changes (completed within 40 microseconds) were obtained from skinned single-fiber segments (4- to 7-mm length) of the iliofibularis muscle of the frog incubated in relaxing, rigor, and activating solution. The fibers were skinned by freeze-drying. The first 500 microseconds of the responses for all three conditions could be described with a linear model, in which the fiber is regarded as a rod composed of infinitesimally small identical segments, containing an undamped elastic element, two damped elastic elements and a mass in series. An additional damped elastic element was needed to describe tension responses of activated fibers up to the first 5 ms. Consequently phase 1 and phase 2 of activated fibers can be described with four apparent elastic constants and three time constants. The results indicate that fully activated fibers and fibers in rigor have similar elastic properties within the first 500 microseconds of tension responses. This points either to an equal number of attached cross-bridges in rigor and activated fibers or to a different number of attached cross-bridges in rigor and activated fibers and nonlinear characteristics in rigor cross-bridges. Mass-shift measurements obtained from equatorial x-ray diffraction patterns support the latter possibility.
Stretch and release experiments carried out on skinned single fibers of frog skeletal muscle under rigor conditions indicate that the elastic properties of the fiber depend on strain. For modulation frequencies below 1000 Hz, the results show an increase in Young's modulus of 20% upon a stretch of 1 nm/half-sarcomere. Remarkably, the strain dependence of Young's modulus decreases at higher frequencies to about 10% upon a 1-nm/half-sarcomere stretch at a modulation frequency of 10 kHz. This suggests that the cause of the effect is less straightforward than originally believed: a simple slackening of the filaments would result in an equally large strain dependence at all frequencies, whereas strain-dependent properties of the actin filaments should show up most clearly at higher frequencies. We believe that the reduction of the strain dependence points to transitions of the cross-bridges between distinct force-producing states. This is consistent with the earlier observation that Young's modulus in rigor increases toward higher frequencies.
Tension responses of rat right ventricular trabeculae to fast length changes are measured with microsecond resolution to obtain information about elastic properties of ventricular myocardium. Responses of these isometrically mounted trabeculae at 22 degrees C to fast length changes completed within 30 microseconds at 22 degrees C to fast length changes completed within 30 microseconds were similar in shape to those of skeletal muscle fibers. Results of quantitative evaluation of responses are interpreted in terms of cross-bridge properties. An upper bound for the elastic range of cross bridges in trabeculae, derived from the maximal developed force during Ca2+ activation and from stiffness in rigor, has been estimated as 8.4 +/- 2.2 nm. Their working stroke, estimated from the tension loss in the rigor state due to a shortening and from tension remaining after (partial) recovery, was 20 +/- 4 nm. The estimated working stroke of cross bridges is about three times larger in trabeculae than in freeze-dried skeletal muscle fibers of the frog at 4 degrees C, which points to important differences between cross-bridge mechanisms of contraction in cardiac and skeletal muscle.
Calcium activated isometric tension development was measured in single skinned muscle fibres of the ileofibularis muscle of the frog. The experiments were carried out at 5 degrees C, pH = 6.9, 1 mM free Mg2+ and an ionic strength of 160 mM. A Hill curve was fitted to the isometrically developed tension at different Ca2+ concentrations by means of a non-linear least mean square approximation. At a sarcomere length of 2.15 micron, the Ca2+ concentration for half maximum tension (K) was 1.6 microM. This Ca2+ concentration decreased with increasing sarcomere length; at 2.7 micron, K was 1.1 microM and at 3.1 micron, K was 0.9 microM. Therefore, Ca sensitivity is increased at larger sarcomere lengths. Consequently, the optimal sarcomere length for tension development shifted to larger values when the Ca2+ concentration was lowered. Osmotic compression of the fibre at 2.15 micron by means of 5% Dextran also caused an increase in Ca sensitivity (K was 1.0 microM). At 2.7 micron, addition of 5% Dextran hardly affected the Ca sensitivity. The possible role of the interfilament spacing in the explanation of these results discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.