A three-dimensional spot-scanning technique for radiotherapy with protons is being developed at the Paul Scherrer Institute. As part of the effort to optimize the design and ensure clinically useful dose distributions, a computer simulation of the dose deposition in the presence of respiratory motion was performed. Preliminary experiments have characterized the proton beam and the scanning procedure. Using these parameters, the computer program calculated the dose within a uniform volume of water in the presence of respiratory motion. Respiration amplitude, respiration period, respiration direction, number of fractions, size and position of the beamspots and rescanning multiplicity were systematically varied and the effect on the dose distribution determined. The dose uniformity is very dependent on the direction of the respiration relative to the three independent beam scanning directions. The dose uniformity decreases with increasing respiration amplitude, but has little response to changes in respiration frequency. Rescanning the volume, such as with fractionation, improves the dose uniformity roughly as the square root of the number of fractions. Broad, Gaussian beams result in better dose uniformity than narrow, sharply delineated ones, but produce slower dose fall-off at the edges of the scanned volume. Results of this work are being incorporated into the design of the system.
In this paper, we report on the clinical application of fully automated three-dimensional intensity modulated proton therapy, as applied to a 34-year-old patient presenting with a thoracic chordoma. Due to the anatomically challenging position of the lesion, a three-field technique was adopted in which fields incident through the lungs and heart, as well as beams directed directly at the spinal cord, could be avoided. A homogeneous target dose and sparing of the spinal cord was achieved through field patching and computer optimization of the 3D fluence of each field. Sensitivity of the resultant plan to delivery and calculational errors was determined through both the assessment of the potential effects of range and patient setup errors, and by the application of Monte Carlo dose calculation methods. Ionization chamber profile measurements and 2D dosimetry using a scintillator/CCD camera arrangement were performed to verify the calculated fields in water. Modeling of a 10% overshoot of proton range showed that the maximum dose to the spinal cord remained unchanged, but setup error analysis showed that dose homogeneity in the target volume could be sensitive to offsets in the AP direction. No significant difference between the MC and analytic dose calculations was found and the measured dosimetry for all fields was accurate to 3% for all measured points. Over the course of the treatment, a setup accuracy of +/-4 mm (2 s.d.) could be achieved, with a mean offset in the AP direction of 0.1 mm. Inhalation/exhalation CT scans indicated that organ motion in the region of the target volume was negligible. We conclude that 3D IMPT plans can be applied clinically and safely without modification to our existing delivery system. However, analysis of the calculated intensity matrices should be performed to assess the practicality, or otherwise, of the plan.
Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.
Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively. To estimate the magnitude of this effect, flux and dose measurements with a 177 MeV proton pencil beam having a width of 0.6 cm (FWHM) were performed. The proton flux and the deposited dose in the beam path were determined behind water, lucite, polyethylene, teflon, and aluminum of diverse thicknesses. The number of out-scattered protons due to inelastic nuclear scattering was determined for water and the different materials. The ratios of the number of scattered protons in the materials relative to that in water were found to be 1.20 for lucite, 1.16 for polyethylene, 1.22 for teflon, and 1.03 for aluminum. The difference between the deposited dose in water and in the phantom materials taken in the center of the proton pencil beam, was estimated from the flux measurements, always taking the different ranges of protons in the materials into account. The estimated dose difference relative to water in 15 cm water equivalent thickness was -2.3% for lucite, -1.7% for polyethylene, -2.5% for teflon, and -0.4% for aluminum. The dose deviation was verified by a measurement using an ionization chamber. It should be noted that the dose error is larger when the effective point of measurement in the material is deeper or when the energy is higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.