h i g h l i g h t sHeat production in a fluidized bed by CO 2 adsorption on Zeolite 13X. Combined infrared/visual camera (PIV-DIA-IR) technique for studying heat transfer. Extensive validation though a combined CFD-DEM model. Key aspects of adsorption process studied with TGA and STA. a r t i c l e i n f o b s t r a c tAs a result of highly exothermic reactions during gas-phase olefin polymerization in fluidized bed reactors, difficulties with respect to the heat management play an important role in the optimization of these reactors. To obtain a better understanding of the particle temperature distribution in fluidized beds, a high speed infrared (IR) camera and a visual camera have been coupled to capture the hydrodynamic and thermal behavior of a pseudo-2D fluidized bed. The experimental data were subsequently used to validate an in-house developed computational fluid dynamics and discrete element model (CFD-DEM). In order to mimic the heat effect due to the exothermic polymerization reaction, a model system was used. In this model system, heat is released in zeolite 13X particles (1.8-2.0 mm, Geldart D type) due to the adsorption of CO 2 . All key aspects of the adsorption process (kinetics, equilibrium and heat effect) were studied separately using Thermogravimetric Analysis (TGA) and Simultaneous Thermal Analysis (STA), and subsequently fluidized bed experiments were conducted, by feeding gas mixtures of CO 2 and N 2 with different CO 2 concentrations to the bed, where the total heat of liberation could be controlled. The combined infrared/visual camera technique generated detailed information on the thermal behavior of the bed. Furthermore, the comparison of the spatial and temporal distributions of the particle temperature measured in the fluidized bed with the simulation results of CFD-DEM provides qualitative and quantitative validation of the CFD-DEM, in particular concerning the thermal aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.