The oral microbiome is incredibly complex with the average adult harboring about 50 to 100 billion bacteria in the oral cavity, which represent about 200 predominant bacterial species. Collectively, there are approximately 700 predominant taxa of which less than 1/3 still have not yet been grown in vitro. Compared to other body sites, the oral microbiome is unique and readily accessible. There is extensive literature available describing the oral microbiome and discussing the roles that bacteria may play in oral health and disease. However, the purpose of this review is not to rehash these detailed studies but rather to educate the reader with understanding the essence of the oral microbiome, namely that there are abundant bacteria in numbers and types, that there are molecular methods to rapidly determine bacterial associations, that there is site-specificity for colonization of the host, that there are specific associations with oral health and disease, that oral bacteria may serve as biomarkers for non-oral diseases, and that oral microbial profiles may have potential use to assess disease risk.
An intuitive, clinically relevant index of microbial dysbiosis as a summary statistic of subgingival microbiome profiles is needed. Here, we describe a subgingival microbial dysbiosis index (SMDI) based on machine learning analysis of published periodontitis/health 16S microbiome data. The raw sequencing data, split into training and test sets, were quality filtered, taxonomically assigned to the species level, and centered log-ratio transformed. The training data set was subject to random forest analysis to identify discriminating species (DS) between periodontitis and health. DS lists, compiled by various “Gini” importance score cutoffs, were used to compute the SMDI for samples in the training and test data sets as the mean centered log-ratio abundance of periodontitis-associated species subtracted by that of health-associated ones. Diagnostic accuracy was assessed with receiver operating characteristic analysis. An SMDI based on 49 DS provided the highest accuracy with areas under the curve of 0.96 and 0.92 in the training and test data sets, respectively, and ranged from −6 (most normobiotic) to 5 (most dysbiotic) with a value around zero discriminating most of the periodontitis and healthy samples. The top periodontitis-associated DS were Treponema denticola, Mogibacterium timidum, Fretibacterium spp., and Tannerella forsythia, while Actinomyces naeslundii and Streptococcus sanguinis were the top health-associated DS. The index was highly reproducible by hypervariable region. Applying the index to additional test data sets in which nitrate had been used to modulate the microbiome demonstrated that nitrate has dysbiosis-lowering properties in vitro and in vivo. Finally, 3 genera ( Treponema, Fretibacterium, and Actinomyces) were identified that could be used for calculation of a simplified SMDI with comparable accuracy. In conclusion, we have developed a nonbiased, reproducible, and easy-to-interpret index that can be used to identify patients/sites at risk of periodontitis, to assess the microbial response to treatment, and, importantly, as a quantitative tool in microbiome modulation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.