We present a mechanism for the recently discovered magnetoresistance in disordered pi-conjugated materials, based on hopping of polarons and bipolaron formation, in the presence of the random hyperfine fields of the hydrogen nuclei and an external magnetic field. Within a simple model we describe the magnetic field dependence of the bipolaron density. Monte Carlo simulations including on-site and longer-range Coulomb repulsion show how this leads to positive and negative magnetoresistance. Depending on the branching ratio between bipolaron formation or dissociation and hopping rates, two different line shapes in excellent agreement with experiment are obtained.
Magneto-electroluminescence (MEL) and magneto-conductance (MC) have been investigated in polymer light-emitting electrochemical cells based on “super-yellow” poly-(phenylene vynilene) (SY-PPV). We measured positive MEL(B) and MC(B) responses that show a modified Lorentzian shape for B < 120 mT. At B < 2 mT, both MEL(B) and MC(B) responses show a second component, opposite in sign to the higher field response. We interpret the magnetic field response using the polaron pair model, from which we extract the hyperfine interaction constant of polarons in the SY-PPV polymer.
We report studies of magneto-conductance (MC) and magneto-electroluminescence (MEL) in polymer light-emitting electrochemical planar devices using “super-yellow” poly-(phenylene vinylene). We observed consistent negative MC while MEL becomes positive when electroluminescence quantum efficiency (ELQE) increases. At an optimal ELQE, the MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when exposed to a threshold laser power. We show that the e-h pair model can explain the positive MEL and MC while the negative MC can be explained by the bipolaron model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.