The suggested health benefits of consuming tomatoes and tomato-based products have been attributed, in part, to the carotenoids present in these foods. Therefore, the objectives of the present study were to (i) analyse carotenoid content and bioaccessibility from different tomato (Lycopersicon esculentum L.) types namely cherry, plum, round, and certain tomatoes-on-the-vine; and (ii) determine if geographical location (Ireland vs Spain) influenced the content and bioaccessibility of carotenoids in tomatoes of the same variety. Carotenoid bioaccessibility is defined as the amount of ingested carotenoids that, after digestion, are available for absorption by intestinal cells. Differences were seen in carotenoid content and bioaccessibility between the different tomato types tested. For instance, Irish round high-lycopene tomatoes contained the greatest amounts of lycopene and lutein but lowest levels of beta-carotene compared with the other Irish tomatoes. Furthermore, the content and bioaccessibility of carotenoids that were sourced from Ireland and Spain also varied greatly. Spanish tomatoes were generally superior in the content, bioaccessibility, and micelle content of carotenoids. To conclude, our findings suggest that geographical location, rather than the type of tomato, seems to have a more pronounced effect on carotenoid bioaccessibility from tomatoes.
Herbs are a rich source of bioactive phytochemicals such as carotenoids, which are known to exert various positive biological effects. However, there is very limited information in the literature regarding the content and bioavailability of carotenoids from commonly consumed herbs. Therefore, the objectives of the present study were first, to determine the carotenoid content of eight herbs namely basil (Ocimum basilicum), coriander (Coriandrum sativum), dill (Anethum graveolens), mint (Metha L.), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), and tarragon (Artemisia dracunculus L.); and second, to assess carotenoid bioaccessibility from these herbs using a simulated human in vitro digestion model. Carotenoid bioaccessibility is defined as the amount of carotenoids transferred to micelles after digestion when compared with the original amount present in the food. The content of individual carotenoids varied significantly among the herbs tested. Carotenoid bioaccessibility varied from 0 to 42.8%. Basil and coriander, and their respective micelles, contained the highest levels of beta-carotene, beta-cryptoxanthin, and lutein + zeaxanthin. Our findings show that herbs are rich sources of carotenoids and that these foods can significantly contribute to the intake of bioaccessible carotenoids.
Spanish bell peppers (Capsicum annuum L.) and chili peppers sourced from Kenya and Turkey were analyzed for their carotenoid content, bioaccessibility, and bioavailability. The order of total carotenoid content in peppers and their respective micelles was red > green > yellow. In terms of cellular carotenoid transport as a percentage of original food and micelle content, the order was yellow peppers > green > red; however, the opposite trend was seen for the actual amount of total carotenoids transported by Caco-2 cells. Although lutein was generally the most abundant carotenoid in the micelles (496.3-1565.7 microg 100 g(-1)), cellular uptake and transport of beta-carotene were the highest, 8.3-31.6 and 16.8-42.7%, respectively. Hence, the actual amount of carotenoids present in the original food and respective micelles seems to reflect the amount transported by Caco-2 cells. Therefore, color influenced the carotenoid profile, bioaccessibility, and bioavailability of carotenoids rather than pepper type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.