Abstract. Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3 H β-decay and the 163 Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163 Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163 Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163 Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163 Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163 Ho EC spectrum are of utmost importance. The high-energy resolution 163 Ho spectra measured with the first MMC prototypes with ion-implanted 163 Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163 Ho will allow to reach a neutrino mass sensitivity below 10 eV/c 2 . We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163 Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass.
Atomic nuclei exhibit single-particle and collective degrees of freedom, making them susceptible to variations in size and shape when adding or removing nucleons. The rare cases where dramatic changes in shape occur with the removal of only a single nucleon are key for pinpointing the components of the nuclear interaction driving nuclear deformation. Laser spectroscopy probes the nuclear charge distribution, revealing attometer-scale variations and highlighting sensitivity to the proton (Z) and neutron (N) configurations of the nucleus. The lead isotopes, which possess a closed proton shell (Z = 82), are spherical and steadily shrink with decreasing N. A surprisingly different story was observed for their close neighbours, the mercury isotopes (Z = 80) almost half a century ago 1, 2 : Whilst the even-mass isotopes follow the trend seen for lead, the odd-mass isotopes 181,183,185 Hg exhibit a striking increase in charge radius. This dramatic 'shape staggering' between evenand odd-mass isotopes remains a unique feature of the nuclear chart. Here we present the extension of laser spectroscopy results that reach 177 Hg. An unprecedented combination of state-of-theart techniques including resonance laser ionization, nuclear spectroscopy and mass spectrometry, has established 181 Hg as the shape-staggering endpoint. Accompanying this experimental tour de force, recent computational advances incorporating the largest valence space ever used have been exploited to provide Monte-Carlo Shell Model calculations, in remarkable agreement with the experimental observations. Thus, microscopic insight into the subtle interplay of nuclear interactions that give rise to this phenomenon has been obtained, identifying the shape-driving orbitals. Although shape staggering in the mercury isotopes is a unique and localized feature in the nuclear chart, the underlying mechanism that has now been uncovered nicely describes the duality of single-particle and collective degrees of freedom in atomic nuclei.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation.Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and Made open access 7 August 2017Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments.
We report on the measurement of the ^{7}Be(n,p)^{7}Li cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a ^{7}Be ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal ^{7}Li(p,n)^{7}Be reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p+^{7}Li reaction is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.