One of the most critical aspects of quality assurance is inspecting products for defects before they are sold or shipped. A good product is more vital than having more of the same item for a customer’s enjoyment. The client has a significant role in determining the quality of a product. Another way to think about quality is as the total of all the characteristics that contribute to the creation of items that the client enjoys. Recently, the application of machine vision and image processing technology to improve the surface quality of fruits and other foods has increased significantly. This is primarily because these technologies make significant advancements in areas where the human eye falls short. This means that, by utilizing computer vision and image processing techniques, time-consuming and subjective industrial quality control processes can be eliminated. This article discusses how to check and assess food using picture segmentation and machine learning. It is capable of classifying fruits and determining whether a piece of fruit is rotten. To begin, Gaussian elimination is used to remove noise from images. Then, photos are subjected to histogram equalization in order to improve their quality. Segmentation of the image is carried out using the K-means clustering technique. Then, fruit photos are classified using machine learning methods such as KNN, SVM, and C4.5. These algorithms determine if a fruit is damaged or not.
Cognitive computing is the mirroring of human brain and this is made possible by using natural language processing, pattern recognition and data mining. By mirroring the human brain (Cognitive computing system), helps to solve some of the complicated problems without much of human supervision. In the fast-changing world, the major challenge every organization facing is difficulty in retaining its employees. Employees may leave an organization due to low salary, overwork, lack of opportunities and recognition, work culture, work-life imbalance etc. Better ways to retain employees is to understand their requirements and fulfill them. The proposed employee feedback sentiment analysis system collects the employee feedback reviews from open forums and perform sentiment analysis using Recurrent Neural Network – Long Short-term Memory (RNN-LSTM) algorithm. On performing Sentiment analysis, employee review comments are classified as Positive or Negative. A report is generated and sent to the HR of the organization as webapp or mobile app. The report has total number of positive and negative comments and positive and negative counts with respect to salary, work pressure etc. With the report, the organization can arrive at identifying social sentiments of their brand and may take corrective actions to retain employees which benefits both organization and employees. This paper also captures the performance of various models in training and predicting the employee feedback dataset and the models evaluated are Logistic Regression, Support Vector Machine, Random Forest Classifier, AdaBoost Classifier, Gradient Boosting Classifier, Decision Tree Classifier and Gaussian Naïve Bayes. The classification report and accuracy of each model is captured. The dataset size was gradually increased from 200 to 1000 and accuracy was predicted for each model. It was identified that the accuracy of machine learning algorithms was ranging between 66% to 85%. On training RNN-LSTM algorithm with dataset of size 30 k, the accuracy was 88%. It was identified that Deep learning algorithm RNN-LSTM performs better with huge dataset. Increasing dataset size still increase the performance of RNN-LSTM algorithm in training and prediction. Thus, the objective function of the proposed model to perform sentiment analysis on employee feedback review comments is achieved successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.