Using the quantum Hamilton-Jacobi equation within the framework of the equivalence postulate, we construct a Lagrangian of a quantum system in one dimension and derive a third order equation of motion representing a first integral of the quantum Newton's law. We then integrate this equation in the free particle case and compare our results to those of Floydian trajectories. Finally, we propose a quantum version of Jacobi's theorem.
In this paper, we apply the one dimensional quantum law of motion, that we
recently formulated in the context of the trajectory representation of quantum
mechanics, to the constant potential, the linear potential and the harmonic
oscillator. In the classically allowed regions, we show that to each classical
trajectory there is a family of quantum trajectories which all pass through
some points constituting nodes and belonging to the classical trajectory. We
also discuss the generalization to any potential and give a new definition for
de Broglie's wavelength in such a way as to link it with the length separating
adjacent nodes. In particular, we show how quantum trajectories have as a limit
when $\hbar \to 0$ the classical ones. In the classically forbidden regions,
the nodal structure of the trajectories is lost and the particle velocity
rapidly diverges.Comment: 17 pages, LateX, 6 eps figures, minor modifications, Title changed,
to appear in Physica Script
In this reply, we hope to bring clarifications about the reservations expressed by Floyd in his comments, give further explanations about the choice of the approach and show that our fundamental result can be reproduced by other ways. We also establish that Floyd's trajectories manifest some ambiguities related to the mathematical choice of the couple of solutions of Schrödinger's equation.
We establish the quantum stationary Hamilton-Jacobi equation in 3-D and its solutions for three symmetrical potentials: Cartesian symmetry potential, spherical symmetry potential and cylindrical symmetry potential. For the two last potentials, a new interpretation of the spin is proposed within the framework of trajectory representation.
Using the relativistic quantum stationary Hamilton-Jacobi equation within the framework of the equivalence postulate, and grounding oneself on both relativistic and quantum Lagrangians, we construct a Lagrangian of a relativistic quantum system in one dimension and derive a third order equation of motion representing a first integral of the relativistic quantum Newton's law. Then, we plot the relativistic quantum trajectories of a particle moving under the constant and the linear potentials. We establish the existence of nodes and link them to the de Broglie's wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.